biosecurity

A publication of MAF Biosecurity Authority

ISSUE 13
1 August 1999

FEATURES

2 New Biosecurity Authority begins work

4 Perspectives on the SPS agreement

6 Draft biosecurity strategy for New Zealand

7 Animal health surveillance

8 Grazing of livestock on Crater Block

9 Recognition of South Africa’s scrapie-free status

10 Leptospirosis safeguards during imports of horses

UPDATE

11 Draft import health standards for consultation

11 New import health standards issued

11 Dog and cat generic risk analysis

11 MINDA identification system approved

11 RCD report

DIRECTORY

12 International animal health regulations

12 How to contact us

biosecurity is published by MAF Biosecurity Authority, and covers biosecurity and animal health issues. It is of special interest to all those with a stake in New Zealand’s animal production industries.

Enquiries: biosecurity
MAF Biosecurity Authority
PO Box 2526, Wellington
Ph: 04 474 4100
Fax: 04 474 4133
Email: biosecurity@maf.govt.nz
Editor: Andrew Matheson
ISSN: 1174 – 4618
MAF Biosecurity Authority has been established, to continue MAF’s biosecurity functions and carry out new functions of biosecurity coordination.

The Biosecurity Authority, also called MAF Biosecurity, was established on 1 July 1999 with a nucleus of staff and programmes carried over from the MAF Regulatory Authority.

The move to set up a separate biosecurity agency follows a government decision that MAF should play a greater role in coordinating the government’s biosecurity functions. It was also a consequence of the decision to restructure food administration in New Zealand.

MAF will continue to manage biosecurity risks to primary production sectors and the environment through its administration of the Biosecurity Act.

The new structure, of the Biosecurity Authority and the Food Assurance Authority, is subject to further change as the government has agreed in principle to establish a single, separate ministry to handle all food regulatory and administration issues from 1 July 2000. Ministers have asked for further policy work on the options of a Ministry of Food or a Ministry of Food and Biosecurity.

In the meantime, by establishing the new Food Assurance Authority and the Biosecurity Authority, the government’s objectives of giving greater emphasis to food safety and biosecurity issues are being delivered.

Biosecurity Authority

MAF Biosecurity is responsible for border control, quarantine services, pest and disease surveillance, emergency response capabilities and other disease control programmes. It is also responsible for promoting animal welfare policies, providing animal and plant health assurances to New Zealand’s trading partners, developing operational and regulatory policy, and risk management.

The authority’s mission is “To protect New Zealand’s unique biodiversity and facilitate exports by managing risks to plant and animal health and animal welfare in New Zealand”.

The Biosecurity Authority is the largest provider of biosecurity services in government. It employs over 80 technical specialists and operates well-established frameworks for setting a variety of standards and managing associated risks.

The authority’s work is mandated by New Zealand laws and regulations, including the Biosecurity Act 1993 and the Animal Welfare Act (likely to be passed during 1999).

Key goals

Protection

A vital goal for MAF Biosecurity is to protect New Zealand’s unique biota by managing biosecurity risks.

This includes developing effective risk management programmes, including scientifically-sound import health standards. MAF operates a border protection service for all New Zealand’s biosecurity needs, applying standards based on sophisticated risk management practices to exclude exotic pests and diseases. There is also continuing surveillance of New Zealand’s animal, plant and forest health status.

MAF Biosecurity has responsibilities for disease and pest control. This includes supporting the development of pest management strategies (for endemic and exotic diseases and pests), and providing the capacity to respond to incursions of exotic organisms.

Coordination

The authority is responsible for leading and coordinating the New Zealand government’s extensive biosecurity programme.

MAF Biosecurity plays a key role in the Biosecurity Council, which brings together the biosecurity resources and expertise of a number of government departments and agencies. It also provides the secretariat for both the Biosecurity Council and the Biosecurity Technical Forum, two interagency bodies responsible for further coordinating New Zealand’s biosecurity programmes.

Assurances

New Zealand’s food and fibre industries depend on credible and accurate government-to-government assurances, as a condition of access to many world markets. MAF Biosecurity is responsible for animal, forest and plant assurances. It also works closely with the MAF Food Assurance Authority on certification for edible animal and plant products.

MAF Biosecurity plays a proactive role in market access, challenging unjustified technical barriers to trade that might exclude New Zealand goods from potential overseas markets.

Animal welfare

The Biosecurity Authority’s goal of developing animal welfare standards has economic and ethical components. The authority is responding
to a growing awareness of animal welfare issues in the community by developing science-based welfare standards. It promotes an animal welfare, rather than animal rights, philosophy.

A key challenge is the implementation of the Animal Welfare Act, likely to be passed during 1999. This will require an extensive review of existing voluntary welfare codes, and working with industry to develop codes that meet new legislative requirements. The growing profile of animal welfare issues in overseas markets is likely to see New Zealand's approach to animal welfare making a significant contribution to success in international markets. The Biosecurity Authority is developing a contract partnership with the RNZSPCA and other groups to deliver animal welfare education and enforcement activities in an efficient and cost effective manner.

Consultation
MAF Biosecurity works closely with the wider national and international community concerned with maintaining biosecurity and managing risks to plant and animal health and animal welfare.

We stay in touch with this community through direct consultation, publications (including Phytozone, Biosecurity, Surveillance and NAWAC and NAEAC newsletters), membership of the Biosecurity Council, industry councils and international bodies, as well as through the policy framework provided by the New Zealand government.

Examples of joint development groups include:

- Agricultural Security Consultative Committees (animals and plants)
- National Animal Welfare Advisory Committee (NAWAC) and National Animal Ethics Advisory Committee (NAEAC)
- Forest Industries Council
- Plants Market Access Consultative Committee.

Some of the world's leading specialists in risk analysis, standard development, animal welfare and animal and plant health work for the authority. Staff participate in international forums such as the world organisation for animal health (OIE), the Interim Commission on Phytosanitary Measures (ICPM) and the World Trade Organization (WTO), to ensure the policies and standards are science-based and recognise New Zealand's unique production systems.

The Ministry of Agriculture and Forestry

MAF Biosecurity is a key part of the Ministry of Agriculture and Forestry (MAF), which has five frontline business groups working closely together.

- MAF Policy: develops policies for New Zealand's land-based sectors;
- MAF Biosecurity: protects New Zealand's unique biodiversity and facilitates exports by managing risks to plant and animal health and animal welfare.
- MAF Food: assures much of New Zealand's exported food is safe and 'fit for purpose';
- MAF Operations: provides a range of core operational businesses including the Quarantine Service, the Verification Agency and the New Zealand animal health and plant pest reference laboratories;
- MAF Forest Management: manages and administers East Coast forestry grants, Crown lease forests on Maori land, indigenous forests and forest health.

Animal Biosecurity

One of the four principal groups in MAF Biosecurity is Animal Biosecurity, which comprises the animal health component of the former MAF Regulatory Authority Animal Health and Welfare group.

Animal Biosecurity is concerned with protecting the health of New Zealand's animal populations, and assuring the animal health status of exports.

The group uses risk analysis methodologies to develop technically-justifiable import health standards, to allow the safe importation of animals and animal products. Market access conditions for New Zealand exports of these commodities are also negotiated.

The business also ensures MAF is able to investigate, contain and diagnose any suspected exotic animal disease anywhere in the country 24 hours a day, 365 days a year.

Barry O'Neil, Group Director, Biosecurity Authority; also Director, Animal Biosecurity; phone 04 474 4128, onsib@maf.govt.nz

Biosecurity Authority

Animal Biosecurity

- Group Director Biosecurity Authority
 - Barry O'Neil
- Executive Manager
 - Melissa Wilson
- Executive Assistant to Group Director
 - Alison Aiken
- Director Animal Biosecurity
 - Barry O'Neil
- Director Forest Biosecurity
 - Ruth Frampton
- Director Planter Biosecurity
 - Richard Veriss
- Director Animal Welfare
 - David Bayvel
- Biosecurity Policy Co-ordination Manager
 - Sue Cotton
- International Agreements Manager
 - Andrew Matheson
- National Manager Risk Management
 - Stuart MacDiarmid
- National Manager International Trade
 - Jim Edwards
- National Manager Import Management
 - Kevin Corrin
- National Manager Surveillance and Disease Response (designated)
 - Derek Belton

*These groups provide input to both the Food Assurance Authority and Biosecurity Authority
We are now into the fifth year of the WTO agreements. Today we are also on the verge of entering into a new round of negotiations, scheduled for January 2000. This next round may include some further negotiation on SPS-related topics. This is a good a time to reflect on our experiences regarding implementation of the SPS agreement.

Roles of regulatory agencies

Some of the more important provisions in the SPS agreement which have caused us significant change in the way we conduct our regulatory affairs, at least in the animal health area, are regionalisation, risk assessment, and transparency.

None of these concepts is new to biosecurity officials. They were concepts that were well developed in a theoretical sense, but with limited and uneven application prior to the negotiation of the SPS agreement. The SPS agreement was helpful in compelling countries to expedite the adoption and practice of these concepts.

The Animal and Plant Health Inspection Service (APHIS) of the US Department of Agriculture has been at the centre of US efforts to implement these concepts in a way that makes sense both from a regulatory and trade perspective. The SPS agreement, along with our interest in expanding our access to foreign markets, has forced us to think hard about how to balance our safeguarding and trade-facilitation objectives.

Our conclusion is that this balance is most likely to be attained, in the long run, by working actively with our trade partners in promoting the development and use of international standards.

In short, a significant effect of the SPS agreement has been to increase the amount of interest and time we are dedicating to working with the standard setting bodies, including the OIE. To this end, I believe we have had a productive and effective relationship with New Zealand, Australian and Canadian animal health officials in discussing and promoting common positions with respective to international sanitary standards.

Education and technical assistance

There has been a huge learning curve domestically in terms of getting the regulatory agencies, industry and other non-governmental groups up to speed with the intent and application of the SPS agreement. We have spent considerable resources in this educational effort conducting workshops, seminars, and preparing and delivering other learning materials.

This educational effort is not limited to domestic groups. We also see a huge demand among developing countries for technical assistance in acquiring the practical understanding of, and capacity to implement, their SPS obligations such as risk assessment. We have tried to help meet these technical assistance needs in our hemisphere. However, a great deal more assistance is needed for countries which are trying to establish the biosecurity infrastructure necessary to meet importing countries' health concerns.

While the SPS agreement was successful in establishing a framework for establishing legitimate health barriers among countries, it has certainly become clear that the countries with the resources to conduct risk assessments, surveillance, inspection, and credible health certification for their products have a decided trade advantage.

On the other hand, the SPS agreement provision on regionalisation has created an opportunity for developing countries to focus their scarce quarantine resources on improving the health conditions in targeted areas within their country, rather than undertake more costly efforts throughout their entire territory.

Managing risk

Most significantly, the SPS agreement has shifted us from a zero-risk paradigm to a policy of managed risk. In doing so, we have had to grapple with the complex issue of how to determine the appropriate level of protection for non-zero risks.

As some of you know, the SPS agreement provides no clear guidance on how countries should set their level of protection for various kinds of risk, except to say this is a sovereign decision and that countries should avoid arbitrary risk management decisions which result in discrimination or a disguised barrier to trade.

APHIS's animal health objective is to 'prevent' the entry and spread of animal disease risks. However, we know that all risks are not equally
continue to argue that the SPS agreement is flawed by an over-reliance on science and risk assessment as the tools for managing risks in trade. They maintain that the SPS agreement would allow a dispute panel to second-guess a country’s safeguarding decisions by ruling on the sufficiency of scientific evidence used in a risk assessment.

While we do not share this view, we must recognise that these are real issues and concerns that exist about the role of risk assessment. It certainly highlights the need to strengthen our risk communication efforts in order that the public can have confidence in the how we evaluate and manage risks.

In response to these food safety and environmental concerns, the US administration has undertaken a ‘Food Safety Initiative’ aimed at enhancing the safety of both domestic and foreign sources of food.

Similarly, as a result of increased trade, the environmental community has dramatised the risks associated with the entry of non-native species which may have harmful ecological or environmental effects. Here we are talking about species of pests which the existing regulatory agencies, such as APHIS, have not traditionally focussed on. The scope of our safeguarding mission may broaden significantly in the coming years as a result of increased interest in guarding both aquatic and terrestrial environments from these so called non-native invasive species.

In retrospect, both the WTO and our regional trade agreement known as the NAFTA resulted, I believe, in perhaps overselling these agreements and creating some expectations which have been difficult to fulfil.

Today, we see that the various trade agreements do provide a valuable framework to level the playing field, but larger macro-economic and other global factors ultimately determine the terms of trade. These include economic downturns in Asia, Latin America, and Russia and the value of the dollar vis-a-vis other currencies. Certainly these economic conditions have resulted in making foreign products, including agricultural goods, affordable to Americans, hence increasing the level of imports into the United States and making our job of managing disease risks more challenging.

The bottom line is that any assessment of our trade agreements needs to bear in mind that the agreement itself needs to be evaluated in the context of other complex global factors. We cannot judge the value of the SPS agreement simply by current trade successes or lack thereof.

Joan Arnoldi, Associate Administrator, Animal and Plant Health Inspection Service, US Department of Agriculture, Washington DC, USA
Comments are invited on a draft strategy for the future direction of biosecurity in this country.

A draft biosecurity strategy for New Zealand has been prepared by the Biosecurity Council. This document is intended to outline the future general direction and vision for biosecurity in this country. It is the first step towards a more comprehensive framework to underpin the biosecurity activities of the agencies represented on the council.

The council is seeking comment on this document.

The draft strategy proposes a definition of ‘biosecurity’, and vision and mission statements to guide the direction of biosecurity in this country. It also outlines 11 principles of what is necessary to achieve New Zealand’s mission for biosecurity.

The document is intended as the first step in ensuring a coordinated and integrated framework against which the agencies on the council can develop their biosecurity policies and programmes. The council intends to develop specific actions against each of the principles, setting out the means for achieving those principles. These actions may require work to be done by either the council or individual agencies.

But before these actions are developed, the council wishes to consult publicly on the draft strategy. It is interested in receiving feedback on the statements and principles in the document, since these are the cornerstone on which more comprehensive strategies and actions will be developed.

The Biosecurity Council was established in 1997 to provide a forum for the discussion of broad biosecurity policy issues among the various departments with biosecurity responsibilities. It also provides a mechanism for establishing the need for, and/or priorities of, programmes associated with managing exotic pests (or recent incursions) (Biosecurity 19: 4).

The council has an independent chair, and is comprised of chief executives of the Department of Conservation and the Ministries of Agriculture and Forestry, Health, Fisheries, Environment, and Research, Science and Technology, and the Environmental Risk Management Authority; a representative of regional councils, and the Group Director of MAF Biosecurity Authority.

Sue Cotton, Biosecurity Secretariat, Ministry of Agriculture and Forestry, PO Box 2526, Wellington, phone 04 474 4283, cottons@maf.govt.nz

Comments are invited by 15 September 1999

Introduction

This document outlines an overarching biosecurity strategy for New Zealand and was drafted by the Biosecurity Council to reflect a New Zealand-wide perspective on biosecurity.

Maintaining New Zealand’s biosecurity is of crucial importance for all our citizens and for our economic well-being as a small island nation. Our borders are constantly tested by organisms that have the potential to cause severe damage to our economy, environment and quality of life. The growth in trade and tourism, intensification within production systems based on exotic species, and climatic and environmental changes, all increase the risks of invasion and establishment of new destructive organisms. To minimise these threats New Zealand needs biosecurity systems that are based on sound principles of risk management, good science and cost-effectiveness.

Definition of biosecurity

Management of risks posed by organisms to the economy, environment and people’s health through exclusion, eradication and control

Vision

Pest-free New Zealand

Mission

Providing effective biosecurity systems to protect New Zealand’s economy, environment and people’s health

Contribution to government’s goals

One of the overarching goals of the government as stated in Goals and priorities 1999/2002 is:

> We treasure our clean, healthy and unique environment and will ensure it continues to sustain nature and people’s needs and aspirations. The life-supporting capacity of soil, air, water and ecosystems will continue to be safeguarded and the biological diversity and spectacular scenery that make New Zealand a special place will continue to be able to be enjoyed by future generations.
The fourth article in the series on MAF’s Animal Biosecurity business examines the collection of animal health surveillance information, and how it is used to assure trading partners of New Zealand’s freedom from particular animal diseases.

When New Zealand exporters send their animals and animal products overseas, our trading partners demand assurances that these are free of serious pests and diseases and do not pose a risk to the health of animals or humans. Animal health surveillance information collected by the Animal Biosecurity business provides those assurances.

The primary function of the Animal Biosecurity business is to safeguard the health status of animals in New Zealand from serious diseases. These diseases can be broadly categorised as either exotic (those which do not already exist in New Zealand) or endemic (those which are already established in some parts of this country).

It is important that New Zealand can demonstrate it does not have certain diseases. If we cannot satisfy our trading partners of this, then in some cases, access to markets will not be possible. In other cases exporters may incur additional testing or treatment costs.

The Animal Biosecurity business undertakes animal health surveillance so that diseases which may affect international animal trade can be identified early, addressed speedily and have minimal impact on New Zealand’s export trade.

Animal health surveillance is the ongoing collection, analysis, interpretation and reporting of New Zealand’s animal disease data.

There are three categories of animal health surveillance activities.

- **Passive surveillance**
 Information is collected from animal samples provided by farmers and veterinarians and processed by animal health laboratories in New Zealand. This gives a picture of the diseases that animal owners and veterinarians are encountering in the field.

- **Enhanced passive surveillance**
 Test results are reviewed as they pass through the animal health laboratory. Samples or cases that look unusual or abnormal are subjected to additional tests. Enhanced passive surveillance may also involve asking veterinarians to look out for particular problems MAF wishes to collect information on, such as abortion in sheep.

- **Active surveillance**
 Part of an animal population is selected, sampled and tested for a specific disease to assess its occurrence. This constitutes a survey of the health of a particular animal population. Active surveillance gives more statistically accurate results than other methods because the surveys are scientifically designed, but it is more expensive than passive surveillance.

A combination of all three activities is needed to achieve Animal Biosecurity’s surveillance objectives.

The Animal Biosecurity group develops contracts with approved animal health laboratories throughout New Zealand to provide passive surveillance and enhanced passive surveillance. Specialised diagnostic testing in virology, bacteriology, molecular biology, immunology, and fish diseases is usually performed by the New Zealand Animal Health Reference Laboratory (NZAHRL).

The NZAHRL also performs the following functions:

- referrals of samples to experts within New Zealand and overseas, when the diagnostic capability is not available or a second opinion is required;
- designing and carrying out animal disease surveys;
- overviewing and providing technical input to the audit of laboratories which supply surveillance information to Animal Biosecurity.

The results of routine surveillance activities are reported to Animal Biosecurity on a quarterly basis. Any provisional diagnoses of notifiable organisms are notified to the Director of Animal Biosecurity immediately. Notifiable organisms are principally those which are not established in New Zealand and would have an adverse impact on animal production or market access. Foot and mouth disease is an example of a notifiable organism.

The surveillance information collected by Animal Biosecurity is used to:

- facilitate New Zealand’s exports of animals and animal products by certifying the country’s disease status, thus minimising the requirements these exports must meet;
- enable the prompt detection of exotic diseases in New Zealand;
- fulfil international treaty obligations, including the timely reporting of animal health events to international organisations and trading partners;
- develop and establish technically-justifiable import requirements for animals and animal products entering New Zealand;
- support the development of pest management strategies to control animal diseases;
- provide input to public health policies for the control of animal diseases that can affect human health.

Case study - active surveillance

MAF recently undertook a 20-month survey of farmed salmon and trout for the four viruses of greatest international trade significance. The survey involved 18 South Island salmon farms, three North Island trout hatcheries and seven return locations for sea-run quinnat salmon. Brain, kidney, spleen and ovarian fluid samples were collected and tested.

The results of the testing for the viruses were negative apart from detection of an aquatic birnavirus in sea-run salmon from one river and one sea-run return site.

The results of this survey confirm earlier surveys that the New Zealand farmed trout and salmon population is free from these four viruses and provides current information to back up New Zealand’s export assurances.

Roger Poland, Acting National Manager (Surveillance), Animal Biosecurity, phone 04 498 9820, polandr@maf.govt.nz
Recently a member of the public reporting the presence of cattle grazing at Crater Block, in the Rotorua area. The person reporting the grazing was concerned because, like many other people, she was under the impression that, following an outbreak of the sheep disease scrapie in the late 1970s, Crater Block was to remain free from livestock in perpetuity.

With the passage of time, a number of misconceptions have grown up around Crater Block and the events associated with the scrapie cases in 1978.

In 1978 scrapie was diagnosed in sheep of British origin being held in quarantine on Mana Island, near Wellington. Offspring of some of the British origin sheep had been moved to Crater Block in mid-1976. No case of scrapie was ever diagnosed amongst sheep on Crater Block.

When scrapie was detected on Mana Island MAF brought a British expert on the disease, Dr John Stamp, to New Zealand to advise on how best to handle the situation. Dr Stamp advised immediate slaughter of all the imported sheep and their progeny. This was carried out immediately, with all the sheep on Crater Block being destroyed within three days.

Dr Stamp also advised restriction of the use of the land on which the sheep had been grazing. He recommended that the land use be restricted to grazing by cattle or deer, or the land should be planted in trees.

On Crater Block planting of trees was under way by late August 1978. Planting could not be completed that year and so cattle grazed the land until the following year when the remainder of the land was planted in trees.

Crater Block is still planted in pine trees, with cattle grazing amongst them.

Mana Island, where cases of scrapie actually did occur, was replanted in native trees and is now a scientific reserve managed by the Department of Conservation. There are no livestock on Mana Island as this would be incompatible with the island’s use as a scientific reserve for native species.

Cattle were never ‘banned’ from Crater Block. Many people have come to believe that there is a permanent ban on the grazing of livestock there, but this was not the original recommendation. There is also no legal basis for banning the grazing of Crater Block.

After the passage of more than 20 years, there certainly is no scientific basis for any ban of grazing livestock on Crater Block. There was never any case of scrapie on that land. The sheep there were killed as a precaution, because they originated from Mana Island.

Apart from the cases which occurred in imported sheep quarantined on Mana Island in the 1970s, scrapie occurred in imported sheep on two Southland farms in 1952 and 1954. However, ongoing surveillance, intensified since 1989, continues to confirm that New Zealand is free from scrapie. MAF is strongly committed to preserving New Zealand’s scrapie-free status. That status is not jeopardised, however, by permitting cattle to graze on Crater Block.

After reviewing the history of the Mana Island scrapie cases and current knowledge of the disease, and discussing the issue with the Agricultural Security Consultative Committee, MAF does not consider that there is any justification for imposing restrictions on the grazing of Crater Block by any livestock.

Stuart MacDiarmid, National Manager (Risk Management), Animal Biosecurity, phone 04 474 4223, macdiarmid@maf.govt.nz
MAF has studied the scrapie status of South Africa, which is relevant to New Zealand's policy on importation of sheep and goats from both South Africa and Australia. This assessment is available for consultation.

Scrapie in Australia and New Zealand

In the 1950s New Zealand and Australia both experienced cases of the disease scrapie in sheep imported from the UK. In both countries the agricultural authorities moved swiftly to stamp out the disease, and implemented restrictive importation policies designed to prevent similar introductions.

In the mid-1980s Australia and New Zealand both set up programmes to permit the safe importation of new sheep bloodlines, involving extensive safeguards against scrapie. However, because of differences in the safeguards imposed, the Australians placed restrictions on the importation of sheep from New Zealand.

To avoid a repetition of this problem, in the late 1980s a joint working party on sheep and goat imports formulated a scrapie freedom assurance programme. MAF and the Australian Quarantine and Inspection Service (AQIS) agreed that all importations of small ruminant bloodlines from outside Australasia would be subject to the programme.

In 1997 AQIS permitted the importation of sheep and goat germplasm from South Africa without imposing any safeguards against scrapie. AQIS was not able to provide MAF with an adequate assessment of South Africa's scrapie status and so MAF was faced with the need to conduct its own assessment.

The history of scrapie in South Africa

The history of scrapie in South Africa is remarkably similar to the history of the disease in New Zealand and Australia, though in South Africa the disease occurred much later.

In South Africa, the first case of scrapie was detected in Natal in 1966. Subsequently, the disease was diagnosed in 11 sheep on nine farms in different regions. All cases were first or second generation progeny of Hampshire Down sheep which had been imported from the UK.

In each case, when a case of scrapie was confirmed, all in-contact sheep were slaughtered and the flock was placed under a four-year quarantine. Sheep on quarantined farms were inspected monthly by government veterinarians. As in New Zealand and Australia, this stamping-out and quarantine policy appears to have been successful.

Following the detection of the first case of scrapie, all sheep which had been imported into South Africa since 1961 were traced and the farms placed under quarantine for four years. All movements from infected flocks, or flocks containing imported sheep, were traced. The flock receiving these animals were also quarantined and subject to monthly inspection. Animals from quarantined flocks were permitted to be moved only directly to slaughter.

Scrapie in South Africa

In April 1999 a MAF veterinarian, Dr Stuart MacDiarmid, then National Manager (Agricultural Security), travelled to South Africa to meet with veterinarians, scientists, officials and others to attempt to assess the basis for that country's claim to be free from scrapie. Dr MacDiarmid has had a long involvement with New Zealand’s scrapie freedom assurance programmes, MAF’s surveillance programmes for scrapie and related diseases, and is an expert in risk analysis.

There have been more cases of scrapie confirmed in South Africa than in New Zealand (11 cases on nine farms compared with (perhaps) seven cases on two farms) but surveillance for scrapie in South Africa is at least as good as, and perhaps better than, that in New Zealand. While not all the brains examined histologically in South African laboratories can be considered as coming from animals likely to be suspected of having scrapie (based on age and/or clinical signs), more sheep brains are examined than in New Zealand. For example, between January 1994 and the end of 1997, 448 sheep brains were examined in New Zealand, from a sheep population of around 48 million. In South Africa around 440 sheep brains are examined per year, from a population of approximately 30 million sheep.

Since 1965 South Africa has prohibited importation of sheep from countries reporting scrapie. Prior to that, importation required official certification that the flock of origin had been scrapie-free for 10 years and had been closed for four years. While one might question the value of these assurances, the farms importing the animals (or embryos or semen) were subject to a four-year post-arrival quarantine. Since 1990 imports of small ruminants have been permitted only from Australia and New Zealand.

On the basis of this evidence, it is clear that South Africa's claim to be scrapie-free is at least as good as New Zealand's and Australia's.

What now?

MAF is faced with a choice: either we recognise South Africa’s claim to be free from scrapie or we impose restrictions on the importation of sheep and goats from Australia, which has already recognised South Africa's scrapie freedom.

Acceptance that South Africa is scrapie-free would not immediately lead to the importation of sheep or goats directly from that country. There are other diseases of importance which would need to be considered in a formal risk analysis. However, acceptance of South Africa's claim to be scrapie-free would mean that importation of sheep and goats from Australia could continue under the same conditions as have been applied until recently. Rejection of South Africa's claim means that restrictions must be imposed on the importation from Australia of sheep and goats and their germplasm.

On the basis of the evidence, MAF favours recognition of South Africa as a country free from scrapie.

Martin Van Ginkel, Technical Adviser (Risk Management), Animal Biosecurity, phone 04 474 4100 x8502, vanginkel@maf.govt.nz

Stuart MacDiarmid, National Manager (Risk Management), Animal Biosecurity, phone 04 474 4223, macdiarmids@maf.govt.nz

The deadline for submissions is 15 September 1999
Leptospirosis safeguards during imports of horses and semen.

Equine leptospirosis is one of the challenging issues being examined by MAF in its analysis of the health risks associated with imports of horses and horse semen.

Safeguards against leptospirosis are not currently included in any New Zealand import health standard for horses or semen, but are in standards for importing other livestock. Do horses and semen present a risk of introducing exotic serovars of leptospirosis? What would be the consequence of any such introduction? What is the most appropriate and least restrictive means of managing the risk? These questions are of relevance to the equine and other livestock industries, and for public health.

The disease and its cause

Leptospirosis is caused by infection with the bacterium *Leptospira*, of which there are over 200 serovars (types). A wide range of animals, and humans, are susceptible, and infection causes kidney disease or abortion.

Serovars interact with animal hosts in different ways; they are maintained in certain animal species (maintenance hosts) but also infect others (incidental hosts). Infection in maintenance hosts leads to chronic kidney infections and long periods of shedding organisms in the urine, whereas infection in incidental hosts typically leads to more acute and severe disease but quicker elimination of infection. The environment also affects the interaction between serovars and animals, and patterns of infection may differ in different locations. Wildlife species, such as rodents and possums, act as maintenance hosts for some serovars.

Leptospirosis is an important disease in the cattle, pig and deer industries in this country, and is a significant health risk for humans exposed to infected animals in their occupations (e.g. farmers, veterinarians, meat workers).

New Zealand’s import health policy

Only a few *Leptospira* serovars are known to occur in New Zealand. Serovars not already present here (exotic serovars) are considered to be unwanted organisms under the Biosecurity Act 1993. This is because adverse consequences to animal or human health might result from their introduction. These consequences are difficult to predict, but some serovars which cause serious problems for animal and/or human health overseas might have similar effects here if they became established.

To reduce the risk of introducing exotic serovars, all livestock species (with the exception of horses) are either tested or treated for leptospirosis prior to importation. The bacteria may also be found in the semen of infected animals, so semen donors are subject to similar measures or semen may be treated with antibiotics.

Risks associated with horses and semen

Overseas evidence confirms horses may be incidental hosts to exotic serovars of leptospirosis. Such infections are probably uncommon, associated with acute illness and short-lived. The likelihood of healthy horses being infected with an exotic serovar at the time of importation is probably very low, and this has been borne out to date by the lack of evidence that imports have lead to introductions. However, imports of infected horses have led to leptospirosis outbreaks here (involving serovars which were already present), suggesting that imports of horses do present a potential pathway for introduction.

There is no information specific for horses to demonstrate the effectiveness of the testing or treatment safeguards, so extrapolation from other species is required. The antibody test used for leptospirosis lacks the accuracy to enable it to be used to determine the serovar infecting an animal. The efficacy of antibiotic treatments in removing chronic kidney infections in horses is also uncertain. There are other issues associated with drug availability in some countries and side effects of treatment, particularly injection-site muscular reactions which may affect the short-term performance of competition horses.

Consultation

The risk management options include doing nothing (i.e. the status quo for horses), testing for antibodies, or treating with antibiotics. MAF has recommended bringing horses into line with other livestock by requiring that every animal be negative to an antibody test or receive treatment prior to import.

MAF asked five experts to review the leptospirosis chapter of its risk analysis on horses and horse semen (*Biosecurity* 3:6). While this provided useful information, the experts’ views did not provide a consensus on the appropriate way forward. The draft chapter on leptospirosis and the experts’ reviews is available for comment. MAF wants input from the livestock industries, public health sector and other stakeholders prior to finalising leptospirosis risk management measures for the importation of horses and semen.

Matthew Stone, National Adviser (International Trade), Animal Biosecurity, phone 04 498 9884, stonem@maf.govt.nz

The deadline for submissions is 15 September 1999
Draft import health standards for consultation

The following draft import health standards (IHSs) have been developed by MAF Biosecurity Authority and are available for public consultation.

Zoo crested porcupines (Hystrix cristata) from the United Kingdom

Zoo crested porcupines (Hystrix cristata) from Australia

These new standards have been developed following requests to import from Hamilton Zoo and Orana Park.

Bovine semen from Hungary

This standard was developed following a request from a New Zealand importer. It includes the same safeguards that have been implemented for other European countries and is based on current import policy.

http://www.maf.govt.nz/AnimalIHS/riskanal.htm

The deadline for submissions is 15 September 1999

New import health standards issued

The following new import health standards (IHSs) have been issued by the Director of Animal Biosecurity and are available for use. Any previous IHSs covering these combinations of country of origin and commodity/species have been revoked.

Organic based fertilisers from the United States of America

The definition of organic-based fertilisers under this new import health standard has been altered from “all fertilisers” to “all pre-packaged fertilisers”. This is to ensure that imports of bulk, unlabelled fertiliser containing meat and bone meal cannot be imported and therefore find its way into New Zealand stockfeed.

Specified pathogen free chicken (Gallus gallus) eggs for laboratory use

This standard, advised as current in Biosecurity 11: 7, has received further modification to increase the testing regime options for Newcastle disease and avian infectious laryngotracheitis.

Specified products for human consumption containing dairy products, eggs or meat

This standard, advised as current in Biosecurity 5: 9, has been modified with the term “meat products” in clauses 8.4, 8.5 and 8.6 being expanded to include “meat and meat products”. In addition, the term “bread” has been added to clause 8.14.

Salmonids for human consumption from specified countries

This standard recognises, in section 11.1, the Norwegian Directorate of Fisheries Quality Control Service sanitary certificate covering salmonids for human consumption imported into New Zealand (Reference: Surnhetsattest, laksefisk, New Zealand, engelsk. 99/04) as being equivalent to the requirements of Part D. Zoosanitary Certification.

Marine fisheries products for human consumption from all countries

This standard replaces the previously referenced 152.10.08.201 (marine fish for human consumption) and 152.10.08.202 (marine foods for human consumption), both dated July 1995.

White rhinoceroses from the Republic of South Africa

This standard was developed following requests from various zoological gardens in New Zealand and was notified for public consultation in Biosecurity 11: 7.

Dog and cat generic risk analysis

An analysis of the risks involved in importing dogs and cats into New Zealand is being carried out by MAF. At this stage, a copy of the list of exotic organisms under consideration is available for comment. MAF Biosecurity Authority is looking for feedback on the list and suggestions for any additional organisms that should also be considered.

MINDA identification system approved

MAF has approved the Livestock Improvement Corporation’s MINDA identification system for use with cattle, deer and goats. The approval under section 50 of the Biosecurity Act 1993 means that MINDA may be used as one of the compulsory identification systems in support of the bovine TB pest management strategy.

The compulsory identification of cattle and deer before they are first moved from their herd is being phased in during the next two years. The approval of MINDA for use on goats means that, subject to endorsement by the Department of Conservation, goats so identified will be recognised legally as farmed animals. The same situation applies to deer identified under an approved ID system.

MINDA, together with the Animal Health Board identification system (Biosecurity 12: 11), was formally gazetted in June for the 1 July commencement of the Biosecurity (Animal Identification Systems) Regulations 1999. The new regulations support the bovine TB strategy by implementing a national lifetime identification programme for cattle and farmed deer. By reconstructing the lifetime movements of infected animals, TB spread can be investigated and controlled.

MINDA system, phone 0800 264 632; AHB system, phone 0800 437 243

Ashley Edge, Policy Adviser, Biosecurity Policy Coordination, phone 04 474 4213, edgea@maf.govt.nz
These animal health regulations have been either proposed or implemented by members of the World Trade Organization, and have been notified under the SPS agreement (the WTO agreement on the application of sanitary and phytosanitary measures) between 28 May and 7 July 1999.

Andrew Matheson, SPS Notification Authority coordinator, International Agreements group, phone 04 474 4219, sps@maf.govt.nz

<table>
<thead>
<tr>
<th>Country</th>
<th>Reference</th>
<th>Date notified</th>
<th>Summary of content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>47 corr.1</td>
<td>7/7/99</td>
<td>Amendment to the address for supply of texts</td>
</tr>
<tr>
<td>Australia</td>
<td>97</td>
<td>4/6/99</td>
<td>Conditions for ovine and caprine genetic material from Canada, USA and EC to protect against scrapie</td>
</tr>
<tr>
<td>Australia</td>
<td>98</td>
<td>4/6/99</td>
<td>Crocodilians and their eggs</td>
</tr>
<tr>
<td>Australia</td>
<td>99</td>
<td>4/6/99</td>
<td>Bovine semen and embryos from Argentina and Brazil</td>
</tr>
<tr>
<td>EEC</td>
<td>72 add.1</td>
<td>2/7/99</td>
<td>Extension of comment date to 30 July 1999</td>
</tr>
<tr>
<td>Netherlands</td>
<td>41</td>
<td>14/6/99</td>
<td>Identification and registration of Walters (cursorial birds) to prevent outbreak of infectious diseases</td>
</tr>
<tr>
<td>Peru</td>
<td>10</td>
<td>10/6/99</td>
<td>Health certificate requirement for plant, vegetable products, animals and products and by-products of animal origin</td>
</tr>
<tr>
<td>Singapore</td>
<td>5</td>
<td>4/6/99</td>
<td>Import licence for horses to protect against Hendra and African horse sickness</td>
</tr>
</tbody>
</table>

How to contact us

Everyone listed at the end of an article as a contact point, unless otherwise indicated, is part of the Ministry of Agriculture and Forestry Biosecurity Authority. The group within the authority to which they belong is also identified.

All MAF staff can be contacted by e.mail, and the standard format for all addresses is surnameinitial@maf.govt.nz

For example, Ralph Hopcroft would be hopcroftr@maf.govt.nz (There are slight exceptions for people with similar names, but these addresses are given where necessary.)

PO Box 2526, Wellington, New Zealand

(+64) 4 474 4100 (switchboard)

most staff have direct-dial lines, which are listed where available

(+64) 4 474 4133

Animal Biosecurity group, except Director
International Agreements group
Biosecurity Policy Coordination group

(+64) 4 498 9888

Group Director and Executive Manager, Biosecurity Authority
Director, Animal Biosecurity

ASB Bank House, 101 The Terrace, Wellington