Also in this issue

Hotline service
Avian influenza
Argali sheep
Varroa alert: South Island apiary cleared
Paper wasp and crazy ant
Shipping committee meets
Forest pest trapping programme
New plant pests
Air transport standards for animal welfare
Biosecurity is published 6-weekly by MAF Biosecurity Authority. It covers biosecurity and animal health, animal welfare, plant health and forest health issues. It is of special interest to all those with a stake in New Zealand’s agriculture, horticulture, forestry, animal welfare and environment.

Enquiries about specific articles: Refer to contact listed at the end of the relevant article.

General enquiries (eg, circulation requests or information about MAF’s biosecurity work):
Biosecurity Magazine
MAF Biosecurity Authority
PO Box 2526, Wellington
Phone: 04 474 4100
Fax: 04 498 9888
Email: biosecurity@mrd.govt.nz

Editorial enquiries:
Editor: Phil Stewart
Phone: 04 384 4688
Email: editor_biosecurity@mrd.govt.nz

ISSN 1174 4618
www.maf.govt.nz/biosecurity

Contents

Features

3 Work still to be done on biosecurity message
Flowering tribute to animal welfare volunteers
4 Hotline service key to quick response
5 Ferrets are unwanted organisms
6 World standard facilities at reference laboratory
7 International symposium on avian influenza
Biosecurity strategy: advice on draft
8 Argali sheep semen importation requirements
Protect New Zealand Week nearly here
9 Varroa update: South Island export apiary cleared
New food authority set for launch
10 Exotic pests appear to be contained
Biosecurity in the roaring forties
11 Busy programme ahead for shipping committee members
12 Forest pest trapping programmes completed for season
13 Spray programme knocks painted apple moth numbers
Moves for industry to provide post-entry quarantine
14 Action on new plant pests
15 Booklet raises biosecurity awareness on Chathams
16 Green light for all varieties of Australian tomatoes
Biosecurity people: Esther Maxim, Eleanor Morrison, Sally Griffin
17 TransTasman animal welfare dialogue
18 Workshops to enhance skills for animal ethics committees
Biosecurity people: Kate Hellstr m
19 Animal welfare in airborne Arks

Update

19 New import health standards
20 Draft guideline for approval of embryo collection centres exporting ruminant embryos from New Zealand
Codes of ethical conduct approvals, notifications and revocations since the last issue of Biosecurity
21 Draft code of welfare for layer hens
MAF seeks comments on GM testing for imported seeds
International standard for wood packaging
Draft standard for consultation

Directory

22 New organism records: 30/03/02 17/05/02

Icon Key

Animal Biosecurity
Plants Biosecurity
Forest Biosecurity
Animal Welfare
Work still to be done on biosecurity message

by Hon Jim Sutton, Minister for Biosecurity

Biosecurity is something that most of us are not complacent about any more in New Zealand.

It’s been almost a year since instant fines for biosecurity breaches were introduced at airports. I’d like to think that since then, awareness of our country’s biosecurity rules has increased. Certainly, those people hit with a $200 fine as they enter the country are a lot more aware of the rules.

However, it concerns me just how many people are continuing to be hit by these fines.

Last month, 2.87 fines were issued for every 1,000 passengers and crew arriving in New Zealand.

Fruit fly host material (in plain language – fruit) makes up 48% of the items appearing on infringement notices; contaminated goods (mostly footwear and tents), at 9.1%, are the second most common type of material.

So, for some people, the message has yet to get through.

But we’re all working on that. You have not heard the last of biosecurity or Max the Beagle!

Protect New Zealand will run a week-long promotion of biosecurity next month, with a wide range of events planned up and down the country. It’s pitched at everyone, young and old, and should significantly boost the profile of our border control officers. Hopefully, more people will realise that responsibility for New Zealand’s biosecurity rests not just on the Government, or MAF Quarantine staff, but on the shoulders of everyone travelling or bringing goods in and out of New Zealand.

For its part, the Government is not being complacent about biosecurity either.

Last month’s Budget announced that new operating expenditure of $11.746 million is to be spent over the next four financial years to strengthen our capability to respond to an increasing number of biosecurity threats in New Zealand.

The focus of that new money will be on increasing risk analysis resource, and surveillance and pest and disease response capability.

The new funding from Budget 2002 will go towards laboratory services provided by the Ministry of Agriculture and Forestry as well as other biosecurity initiatives within MAF, including funding for new research into varroa, increased resources for core activity, improved surveillance, and ongoing support for a biosecurity awareness programme.

The biosecurity awareness campaign, Protect New Zealand, has been supported by a shift to ongoing annual funding of $350,000.

This Government is committed to improving New Zealand’s biosecurity and border control measures.

From the moment we became Government in 1999, we have demonstrated this commitment by tightening border control standards, screening 100 percent of all postal items as well as all air crew and passenger baggage.

More staff and detector dogs were hired, soft-tissue x-ray machines purchased for airports that hadn’t had any sort of screening before, and instant fines were introduced.

A $1 million research project to improve biosecurity measures for sea freight has been commissioned and, when it reports, I expect that there will be steps we can take to ensure that sea freight is not an easy channel for pests and diseases to make their way into our country.

If it is possible to tighten border controls and enhance New Zealand’s biosecurity measures, this Government will do it.

Flowering tribute to animal welfare volunteers

MAF Director-General, Murray Sherwin paid tribute to the efforts of RNZSPCA volunteers at the RNZSPCA Annual Conference and AGM held in Wellington on 18 and 19 May.

Mr Sherwin (left), on behalf of the Minister of Agriculture, presented Peter Mason (right), President of the RNZSPCA a framed camellia – the symbol representing the United Nations International Year of Volunteers 2001.

Mr Sherwin said the award recognised the society as New Zealand’s leading animal welfare charity and acknowledged the vital roles that individual RNZSPCA inspectors and volunteers play in the enforcement of the Animal Welfare Act 1999.
MAF’s exotic disease and pest emergency hotline number, 0800 809 966 is available to the public 24 hours a day, seven days a week. The hotline contact number is listed in the front of all telephone books and is available through every veterinary clinic.

The National Centre for Disease Investigation (NCDI) is part of MAF’s Reference Laboratory network. The NCDI manages MAF’s exotic disease toll free service and receives notification of suspected exotic diseases and pests. The Exotic Disease Response Centre (EDRC) is part of the facility and manages the investigation, diagnosis, containment, control and, where required, the eradication of an exotic animal disease.

MAF Reference Laboratories Director, Dr Hugh Davies, says the exotic disease and pest emergency hotline received 12,000 calls from the public last year. With increased public awareness of biosecurity risks, he expects this number to increase.

Trained operators

The hotline is staffed by trained call centre operators. They are backed up by specialist MAF staff who are on call around the clock.

Hotline staff use a ‘decision tree’ established by MAF when dealing with inquiries. Three key questions allow them to quickly ascertain if the call requires further attention. By screening calls, the operators allow MAF’s experts to focus their resources on the most important cases.

Dr Davies says the hotline is very effective as the first point of contact.

This is especially true in instances where, as members of the public themselves, call centre staff are more inclined to ask a question that a scientist may take for granted.

What happens once a call is logged?

If hotline staff establish a need for follow up, MAF staff are paged. If it is serious the inquiry is referred to a specialist MAF staff member or contractor in the area. MAF has single point contact with all contractors in their field so there is no room for a call to slip through the system.

Problems can arise from ambiguous information and call centre staff rely heavily on the accuracy of the informant. This can be especially difficult when dealing with children or the elderly or someone who may have only seen the animal or insect briefly. In these cases MAF always responds. Few of the pests reported are dangerous.

Strange insects wanted

MAF staff examined 17,000 ‘creepy crawlies’ in the last twelve months and public calls have led to the discovery of a range of new (to New Zealand) organisms ranging from insects and lizards to a dead fruit bat found in an imported car.

When members of the public call the hotline about a strange insect or small animal they are encouraged to contain the organism. If practical, the caller will be asked to mail the specimen freepost to the NCDI for further investigation.

Calls range from reports of viruses at one end of the scale to panthers at the other end. Responses to inquiries can range from immediate action to a ‘slow burner’ approach where no urgent action is required.

Case determines response

“Our range of responses to a call is determined by the level of threat as well as location,” says NCDI Administration Team Leader Nicci Rowswell. “Plant inquiries do not usually constitute a threat requiring immediate attention while exotic animal and disease inquiries are responded to immediately because of the ability of the subject to move, escape again or create harm. The location is also significant – a shipping container or recently unpacked box may signal more than one offender while a single plant or dead animal in a driveway would be unlikely to create an emergency.”

The other key to MAF’s emergency response set-up are the testing laboratories.

Laboratory support

Lindsay Hawke, National Manager of the National Plant Pest Reference Laboratory (NPPRL), manages a staff of 29 divided between two laboratory sites – at Lynfield in Auckland and Lincoln near Christchurch.

The unit employs entomologists, plant virologists, a nematologist and several plant pathologists.

“We have one staff member at each site handling all inquiries within normal working hours and the line is frequently busy. When this happens the caller is asked to leave details on an answer phone for attention as soon as possible. Weekend call details are collected by the 0800 call centre staff and information is faxed to the laboratory.
for action on the next working day,” explains Lindsay.

Lindsay says the current Biosecurity Awareness Programme has successfully raised public awareness and resulted in an increase in calls.

Animal welfare complaints hotline

MAF’s Special Investigations Group (SPIG) Animal Welfare Unit also has a toll free number for public use: **0800 327 027**. The number is used by the public to report incidents where they believe the welfare of animals is at risk. The unit comprises eight staff, two in Auckland and five field staff across the country.

Earl Culham, MAF Senior Animal Welfare Investigator, says his group also relies on information received from the public advising the office of animal welfare issues. The group also receives calls from MAF veterinarians based in meat processing plants throughout the country.

“We prefer to have the name and address of the informant so we can advise them of the outcome. These details remain confidential to MAF. All calls received are graded into three response modes depending on urgency.”

The support of the public is critical and they are encouraged to call sooner rather than later. The quicker staff can act, the more chance there is of saving an animal.

While most urban calls are directed to the Society for the Prevention of Cruelty to Animals (SPCA) the rural cases, involving mainly larger animals, are dealt with by the Special Investigations Unit.

Special difficulties can arise, especially in rural communities, where people are reluctant to inform on their neighbours. However, Earl Culham says making the call is often the very best thing for all parties.

“The stock will be saved from further distress and the owner will get the help they need when they are obviously not coping well. The informant’s details are always treated as highly confidential and all calls remain anonymous.”

MAF’s 0800 numbers:

- MAF emergency line **0800 809 966**
- MAF Welfare line **0800 327 027**

Protect New Zealand website:

www.protectnz.org.nz

Ferrets are unwanted organisms

Ferrets have been declared unwanted organisms under the Biosecurity Act 1993. No new pet ferrets can be bought, sold or bred and no new ferret (fitch) farms will be allowed.

In 2001, the Minister of Conservation asked the Department of Conservation to investigate ways to ban pet ferrets, while still allowing people to keep current pets and run existing ferret farms. Ferret farms largely export their animals.

In February 2002 the chief technical officer for the Department of Conservation declared ferrets to be unwanted organisms under the Biosecurity Act.

When the declaration becomes effective (when the Biosecurity Amendment Bill 2001 is passed into law – expected some time this year), owners will be able to keep the pet ferrets they currently own as existing arrangements are exempted. Pet ferret owners, however, will not be able to sell, breed, or buy new ferrets or give them away. Pet shop owners will no longer be able to buy or sell ferrets. Current ferret farm owners will be exempted from the ban on ferrets, but they no longer be able to sell ferrets domestically.

The popularity of ferrets as pets was rising, increasing the risk of escape into the wild that could enlarge the size and range of the feral population. Earlier this year, for example, people were found exercising ferrets on the beach at Great Barrier Island. This type of behaviour could introduce ferrets to a mustelid-free island and create havoc for wildlife.

In the mid-1980s the fur trade collapsed. The large-scale, illegal release of unprofitable farmed ferrets which followed helped increase the spread of ferrets throughout New Zealand. As the population of pet ferrets diminishes, so too will the risk to biodiversity. The new measures to reduce that risk are intended to prevent a future resurgence of ferrets in the wild.

DoC’s mandate is to protect indigenous biodiversity and banning pet ferrets is a step towards reducing manageable, human-induced threats.

Phil Dawson, Senior Technical Support Officer, Department of Conservation, phone 07 858 0014, fax 07 858 0001, pdawson@doc.govt.nz
World standard facilities at reference laboratory

The New Zealand Animal Health Reference Laboratory (AHRL), at Wallaceville, near Wellington, is an integral part of the MAF Reference Laboratories network.

The facility, based at the National Centre for Disease Investigation (NCDI), undertakes the laboratory diagnosis of exotic diseases of animals, the design and implementation of surveillance surveys, and export/import testing of animals, birds and fish.

The AHRL employs around 30 staff comprising a diverse mixture of laboratory veterinarians, scientists and technicians operating in the fields of virology, bacteriology, immunology, molecular biology and fish diseases.

When there is a requirement for expertise not available at the laboratory, NZAHRL has contractual arrangements with qualified professionals nationally and internationally.

Director, Dr Hugh Davies says there is a seasonal aspect to the laboratory’s work, particularly in the export area. “We can be quiet for a number of weeks then a huge export consignment is due or there is an exotic disease response and we suddenly get very busy,” he says.

Multiskilled staff

AHRL staff have to be multiskilled in order to adapt to fluctuating demands. This allows staff to be moved around to focus on areas of demand as required.

Gary Horner, Team Leader Microbiology and Joseph O’Keefe, Team Leader Immunology and Molecular Biology both manage the laboratory and have a coordinating role within their individual teams.

They say the seasonal aspect to their work, especially in the export area, can pose special challenges.

For example, Artificial Breeding Centre testing happens twice a year. With the European Union requiring five semen straws to be tested from each bull, this is a particularly busy time for staff. The pet passport scheme is another labour intensive area – veterinarians vaccinate the animals and take samples that are sent to Australia for rabies testing. There are usually 10 of these tests for completion each week.

Greater certainty of BSE freedom status

Currently, a trade risk mitigation survey is underway. This will provide greater certainty of New Zealand’s freedom from bovine spongiform encephalopathy (BSE). The laboratory completes BSE testing and carries out surveillance work to OIE (World Animal Health Organisation) standards.

New methodologies

Each exotic disease situation also brings new responses and methodologies. Dr Davies says the laboratory will seek to validate confirmation tests through other new methods e.g. applying molecular diagnostic methods. This would lead to early identification of exotic diseases.

Early identification enables the timely selection of appropriate control measures which minimises the impact through reduced disease spread, reduced quarantine zones, faster eradication and early declaration of country freedom with reduced economic consequences.

Having world standard containment facilities here in New Zealand means fewer time delays and a greatly improved service to the country’s animal industries.

Dr Hugh Davies, Director, MAF Reference Laboratories, phone 04 526 5600, fax 04 526 5601, daviesh@maf.govt.nz
International symposium on avian influenza

Howard Pharo, National Adviser Risk Analysis, recently participated in the 5th International Symposium on Avian Influenza, which was held at the University of Georgia Centre for Continuing Education in Athens, Georgia, USA.

Since the USDA/ARS Southeast Poultry Research Laboratory is also located in Athens, this presented an opportunity to meet a number of United States poultry experts who have reviewed various MAF risk analyses in the past, and to re-establish valuable contacts with them for future cooperation.

The major advances in molecular biology in recent years have led to dramatic advances in understanding of the epidemiology of influenza viruses in all species. The 1997 outbreaks of avian influenza in Hong Kong which resulted in a number of human deaths resulted in a large increase in research on influenza viruses world-wide.

Wild aquatic birds natural hosts

Of particular interest from the New Zealand perspective was the session on the global ecology and epidemiology of avian influenza. The main natural hosts of influenza viruses are wild aquatic birds. They are the source of viruses affecting domestic birds. The role of migratory waterbirds in disseminating influenza viruses throughout the world has been known for some time, but it has recently become clear that mixing of avian species allows the exchange of viral genetic material, resulting in the development of new viruses. This mixing is particularly important in the context of live bird markets, particularly in the United States, Hong Kong, and China. These live bird markets may sell a range of birds, such as ducks, geese, quail, turkeys, and guineafowl as well as chickens, thereby presenting considerable opportunities for viruses to swap genetic fragments, effectively breeding with one another.

But there is now very strong evidence that influenza viruses are only ever pathogenic in intensively reared turkeys and chickens. It is now almost universally accepted that these viruses mutate to virulence some time after they have been introduced into intensive poultry flocks.

Precursors to virulent viruses

Therefore, there has been increasing focus in recent years on viruses circulating in poultry flocks. The concern is that some of these may be precursors of virulent viruses, and several countries have been considering whether it might not be prudent to eradicate low pathogenicity avian influenza (LPAI) viruses that are circulating in poultry flocks before they mutate to high pathogenicity avian influenza (HPAI).

This is currently the approach being followed in the United States. A LPAI virus appears to have originated in the live bird markets of northeastern United States cities, suggesting that the virus has somehow been introduced into Virginian poultry flocks from the live bird markets.

Howard’s paper on assessing the risk of avian influenza viruses in imported poultry meat addressed this issue in discussing the hazard identification step of the risk analysis. While the OIE focus has always been on HPAI, these viruses do not appear to persist in poultry populations, but as discussed above they arise from time to time by mutation from LPAI viruses. It is logical therefore that the focus of international regulation should be changed from HPAI to those precursors of virulent viruses, and several countries have been considering whether it might not be prudent to eradicate low pathogenicity avian influenza (LPAI) viruses that are circulating in poultry flocks before they mutate to high pathogenicity avian influenza (HPAI).

In providing the Biosecurity Council and the development team with improvements to the draft text, the advisory group was building upon the substantial contributions made earlier by biosecurity stakeholders, the public, the issues groups (Biosecurity 33:16) and the Maori Focus Group.

Subject to approval by the Biosecurity Council at its meeting on 11 June, the draft strategy was to be submitted to the Minister for Biosecurity, an ad hoc group of Ministers with portfolio interests in biosecurity, and the Cabinet. If the draft strategy is approved promptly, then public consultation could proceed in late July/August.

Howard Pharo, National Adviser Risk Analysis, Animal Biosecurity, phone 04 474 4100, fax 04 474 4133, pharo@maf.govt.nz

Malcolm Crawley, Biosecurity Strategy Development Team, phone 04 460 8710, fax 04 460 8779, bsdteam@biostrategy.govt.nz

biosecurity.govt.nz
Argali sheep semen importation requirements

Following the completion of the disease risk analysis, an import health standard for Argali sheep (*Ovis ammon polii*) semen has now been issued.

Risk analysis

The disease risk assessment for semen from a specific ram in the Singapore Zoo was completed by a private consultant and notified for public consultation (*Biosecurity* 31:16,17).

Two submissions addressed disease issues and the following modifications to the proposed sanitary measures were made as a result:

- the period of quarantine for the first generation progeny of the scrapie freedom assurance programme will be five years
- all three batches of the Argali ram semen will be cultured for *Chlamydia psittaci*
- all three batches of the Argali ram semen will be cultured for *Mycoplasma, Ureaplasma* and *Acholeplasma* species.

Environmental impact issues were raised in three of the submissions received. The submissions indicated that these should be MAF’s concern. However, this responsibility is not MAF’s. MAF does undertake that a biosecurity clearance will not be given for Argali sheep progeny unless both MAF’s disease sanitary requirements are fulfilled and an Environmental Risk Management Authority (ERMA) release approval is given.

A separate disease risk analysis and import health standard would be required before Argali sheep tissues could be used.

Import health requirements

Before the semen is exported to New Zealand, the donor ram shall be tested free of Q fever, maedi-visna, bluetongue and enzootic abortion of ewes. The semen shall be cultured negative from specified mycoplasmas, *Ureaplasma* spp. and *Acholeplasma* spp. (with the exception of *A. laidlawii*).

In New Zealand, the progeny of the semen must be shown to be free from scrapie, maedi-visna, pulmonary adenomatosis and nasal adenocarcinoma before changing to containment.

During quarantine the animals must be held in a facility meeting the requirements of the MAF Biosecurity Standard for Sheep and Goat Transitional Facilities. After the disease requirements of the import health standard are completed, the progeny must be held in a containment facility meeting the MAF Biosecurity Containment Standard for Field Testing of Farm Animals.

For the risk analysis and review of submissions:

- Martin van Ginkel, Technical Adviser, Risk Analysis, Animal Biosecurity, phone 04 470 2781, fax 04 4744 133, vanginkelm@maf.govt.nz

For the import health standard and facility standards:

- Kevin Corrin, National Manager, Import Management, Animal Biosecurity, phone 04 4744 136, fax 04 4744 133, corrink@maf.govt.nz
- www.maf.govt.nz/argsemic.sin.htm
- www.maf.govt.nz/154-02-02.htm
- www.maf.govt.nz/154-03-06.htm

Protect New Zealand Week nearly here

Max the Beagle will get a week of high profile publicity from 8 – 14 July, during the first-ever Protect New Zealand Week.

The week is a major focus for the biosecurity awareness programme, launched last September, and is intended to highlight the positive side of biosecurity.

A programme of events was still being finalised as this edition of *Biosecurity* went to press, but can be viewed on the Protect New Zealand website at www.protectnz.org.nz

Max’s real-life colleagues will be pounding the streets to raise awareness during Biosecurity Awareness Week.

Programme Manager Melissa Wilson says the amount of interest and support from partner agencies and industry sectors has been highly encouraging.

There will be a nationwide radio blitz of short advertisements and interviews during the week, as well as media coverage of selected ‘biosecurity advocates’. Real beagles will be seen out and about on walks at public parks in Auckland, Wellington and Christchurch.

The biosecurity awareness programme will continue beyond the end of the year, having received annual funding of $350,000 in Budget 2002.
The UK’s Department for the Environment, Food and Rural Affairs (DEFRA) has accepted cross-infestation as the reason for detection of varroa mites on an export consignment of queen bees from the South Island. A comprehensive investigation by New Zealand and UK authorities completed in less than three weeks, concluded the mites were of local UK origin and not from New Zealand.

On Friday 3 May, MAF was advised that there was a possibility that an imported shipment of queen bees from the South Island may contain varroa mites. The tests were conducted by Central Science Laboratories (CSL) in the United Kingdom.

Two varroa mites detected

Under the UK system for handling live bee imports, the shipment goes direct to the importer. The importer re-cages the queens and sends the escort bees (worker bees that accompany each caged queen) to CSL for testing. The New Zealand consignment involved 50 queens with six to ten escort bees for each queen. While testing these escort bees, CSL located two varroa mites. As CSL were aware that varroa has not been detected in the South Island, they notified MAF.

Further queen bee exports from the producer were suspended, and MAF’s Exotic Disease Response Manager (EDRM) sought more information from the UK to trace the origins of the consignment. Information was gathered on the processing of the consignment at the importers to determine the risk of cross-infestation.

Suspect hives sampled

Two apiary officers from AgriQuality New Zealand were sent to the exporter’s home property to carry out a field investigation. They arrived the day after the original notification, interviewed the beekeeper, and identified which apiary sites the queen bees were likely to have originated from. The suspect apiary sites were then sampled using miticide strips and sticky-boards.

Examination of records at MAF’s Lynfield laboratory indicated one site was used for the implicated consignment. All other sites used to provide bees for consignments from this exporter to the United Kingdom were also sampled. Sampling was conducted over a week as there were multiple nucleus hives used for queen-rearing. Opportunity was given to the apiarist to unite these and avoid queen mortalities.

Mite infestation did not originate in NZ

The CSL’s records identified the UK importer of the affected consignment. Significantly, the importer was hospitalised around the time the shipment was received, and other apiary staff carried out the re-caging of the New Zealand queens. In the opinion of the importer, there was a possibility of cross-infestation at this point. Varroa mites were known to have been present in the importer’s hives, and in wild bees in the area. On 21 May, DEFRA confirmed that cross-infestation was accepted as the reason for detection of varroa mites on New Zealand bees.

Paul Bolger, Varroa Programme Coordinator, Animal Biosecurity, phone 04 474 4144, fax 04 474 4133, bolgerp@maf.govt.nz

www.maf.govt.nz/varroa

New food authority set for launch

The New Zealand Food Safety Authority (NZFSA) is set for launch from 1 July. The NZFSA will replace the existing food safety regimes currently administered by MAF (MAF Food Assurance Authority) and the Ministry of Health.

“We will have a new look and logo, a new location to move into and it’s full steam ahead to ensure we are up and running and ready to operate on 1 July,” says Sandra Daly, MAF Food’s Director Business Services.

Sandra says the NZFSA has plans for an extensive communication strategy to introduce the new Authority and to ensure all groups involved are well aware of what is happening and what they can expect.

The NZFSA will be responsible for food safety assurances both within New Zealand and in export markets.

There are some strong areas of common interest between MAF Biosecurity and the NZFSA, especially in areas such as BSE where there are both human and animal health issues.

Sandra says the strong level of cooperation between the two groups will continue once the NZFSA is operating.

“We will also continue to share the principles of risk based management and setting of acceptable levels of protection.”
Exotic pests appear to be contained

Marlborough – an area already plagued by wasps with overseas origins – was host to a new species of wasp.

Paper wasp

A single, adult female yellow oriental paper wasp (*Polistes olivaceus*) was found in a residential garden in Picton in early April. During a follow up search, a suspect *P. olivaceus* nest was also located and destroyed. The nest consisted of about seven cells and contained four or five eggs. MAF received 38 calls to its freephone number (0800 809 966) following a press release asking the public to be on the lookout for unusual looking wasps. To date no further *P. olivaceus* specimens have been found.

Native to Asia, *P. olivaceus* originates from warmer climates. During the past century this wasp has spread to parts of Ethiopia and throughout the Pacific. There are several historical records of *P. olivaceus* being detected in New Zealand. However, there is no evidence to suggest that these wasps have ever successfully established. It is doubtful whether *P. olivaceus* would survive a winter in Picton. There will be further surveillance in the spring once the weather warms up.

Crazy ant species found

The red imported fire ant surveillance programme has snared two more exotic ant species. Two species of crazy ants, *Anoplolepis gracilipes* and *Paratrechina longicornis* were detected at the port of Auckland in April.

Only one nest of the yellow crazy ant (*Anoplolepis gracilipes*) was found. The yellow crazy ant is well known for the devastating impact it has had on the Christmas Island (Australian territory) land crab population.

Another species of crazy ant (*Paratrechina longicornis*) appeared to be more widely spread within the port area. *P. longicornis* specimens were also subsequently found at a transitional facility in Mangere, Auckland, as a result of fire ant surveillance archives. *P. longicornis* is a cosmopolitan species better known for its status as an urban nuisance pest.

Results so far are encouraging. The yellow crazy ant nest has been destroyed and no further specimens have been found. The *P. longicornis* infestations have also been treated and monitoring will continue over the winter to ensure that treatment has been successful. An information notice and letter has been sent to businesses within the Auckland port area, and to all transitional facilities in Auckland that are known to receive containers from the port. People working in these areas have been asked to report any unusual ant activity. There will be further surveillance for crazy ants once temperatures rise again in the spring.

Crazy ant: two species detected in Auckland.

For more information refer to:

Biosecurity in the roaring forties

The annual conference of the New Zealand Biosecurity Institute is being held in Southland for the first time in the institute’s 52 year history.

Southern Exposure – The Roaring 40s will be held in Invercargill on 24 – 26 July 2002. The theme reflects an emphasis on biosecurity in the southern mainland, Stewart Island, and the sub-Antarctic islands. Stewart Island is the destination for a field trip on Saturday 27 July that will focus on Department of Conservation (DoC) biosecurity programmes.

Papers will be presented on border control, pest plants, animal pests, freshwater and marine pests, insect pests, biological control, biosecurity policy, and the draft *Biosecurity Strategy for New Zealand*. There will be workshops, and a guest speaker from Perth, Australia, on ways to encourage community action. The organisers are hoping the Minister for Biosecurity can be present to open the conference.

The conference will attract delegates from MAF, Landcare Research, AgResearch, DoC, National Institute of Water and Atmospheric Research, and regional councils. The institute and Environment Southland extend an invitation to anyone involved in biosecurity to attend the conference.

The New Zealand Biosecurity Institute is an incorporated society open to anyone interested in biosecurity issues. The institute’s mission is: *To preserve and protect New Zealand’s natural resources from the adverse impacts of invasive pests.*

For conference and institute details:

- www.biosecurity.org.nz
- keith.crothers@envirosouth.govt.nz
Busy programme ahead for shipping committee members

A number of actions arising from the recent meeting of the Shipping Biosecurity Consultative Committee will keep members busy until they meet again in September.

The committee provides a forum by which MAF Biosecurity and the MAF Quarantine Service can consult with seaport-based shipping, cargo handling and the importing industry on issues arising from the management of New Zealand’s biosecurity programme. These ‘on the ground’ representatives provide valuable advice in ensuring the effective and efficient implementation of the programme.

Email list

Early notification of changes to border standards and procedures is vital to the smooth running of our port operations. To assist this, the committee will establish an email subscription list for interested parties to receive up-to-date notice of any changes. Currently there are about 20 notifications every six weeks. The list will be available on the MAF Biosecurity website.

Methyl bromide under scrutiny

Methyl bromide for quarantine and pre-shipment use continues to come under scrutiny. Already progress has been made in negotiations with Australia on lowering the fumigation rate for exported sawn timber to nearly half the current rate depending on temperature.

Use of methyl bromide as a soil sterilising agent will be phased out by 2005 (Biosecurity 34:18).

Submissions on cost regulations

Ten submissions were received on the proposed Biosecurity Costs Regulations. These regulations cover biosecurity services including border inspections, treatment or destruction of risk goods, applications for import permits and supervision of transitional facilities. They have not been reviewed since they were introduced in 1993 and are considerably out of date as they were based on earlier calculations. It is expected the regulations will be enacted by July 2001.

In their submission, the shipping industry raised the issue of why empty containers are being charged at the same rate as full containers. MAF’s position is that this charge is the average for all types of containers, not just full containers.

Protect New Zealand update

Guest speaker Melissa Wilson, project manager for the Protect New Zealand campaign, provided an update on the Cargo Logistics Biosecurity Awareness Campaign. The campaign will kick off in the second week of July as part of the Protect New Zealand week. A variety of promotional vehicles including posters, pamphlets and presentations have been proposed to ensure the campaign has a high profile. These will be distributed through operation rooms, cafeterias, truck operators, customs agents, freight forwarders, and the Road Transport Forum, ensuring the campaign gains a wide profile.

Standard on places of first arrival

During May, MAF will visit ports around the country to discuss the revised standard for ports to be places of first arrival under the Biosecurity Act. These standards have not been revised since 1997 and will clarify who is responsible to control uncleared goods.

Container cleaning costs

The committee also considered ways of minimising container contamination. The cost of unpacking and cleaning a contaminated container is about $700 – $800 and is the responsibility of the importer. Unfortunately, the importer has no control over how a container will be packed overseas and cannot predict the state in which it will arrive in New Zealand.

Options for raising awareness of New Zealand requirements for shipping containers included producing a pamphlet that will be distributed to offshore suppliers, and website based information.

The committee will meet again in Wellington on 5 September.

Ken Glassey, Programme Coordinator (Border Management), phone 04 498 9610, 025 249 2318, glasseyk@maf.govt.nz
Forest pest trapping programmes completed for season

AgriQuality New Zealand Ltd has completed its seasonal forest pest trapping programmes for MAF Forest Biosecurity, and the analysis is pleasing on all counts. Results indicate that New Zealand remains gypsy moth-free and we have no new beetle species to worry about.

The first season of high-density beetle trapping was undertaken within New Zealand in 2001/02. Some 380 traps were deployed at ports and selected timber processing yards and, out of a total of 19,801 trapped insects, no new to New Zealand insects were identified. Captured specimens included Hylurgus ligniperda, Hylastes ater and Arhopalus tristis, all known to already be established in the country.

Insect traps baited with chemical attractants allow baseline data to be collected. Through trapping, experts can determine the presence of any new beetle species that has established in New Zealand. Information from trapping acts as an early warning of an incursion, and allows MAF to facilitate any eradication actions.

With the inaugural round proving so successful, a further trapping programme is planned for the summer of 2002/03.

Insects’ niche threatens forestry

Bark beetles and wood borers are a large and diverse group of insects that shelter, feed and reproduce within the inner bark and outer sapwood tissues of living trees, logs, stumps and branches. As well as the damage caused by feeding, some bark beetles carry fungi on their bodies which spread diseases, such as Dutch elm disease or pine pitch canker, from tree to tree.

The insects prefer to feed on recently felled trees and logging debris, but they will infest and destroy healthy trees when beetle populations are high. Trees that are damaged (e.g. by lightning strike, wind, logging operations or drought) are vulnerable to attack.

Many of the species in this group are capable of attacking and killing pines, threatening the forestry economy. New Zealand’s forest industry is dominated by plantings of exotic conifer species, such as Pinus radiata. At present, our forests are relatively free of the destructive bark beetles and wood borers that are associated with exotic conifers in their native habitats.

Nature’s role for bark beetles and wood borers is to give ecological succession a helping hand by selectively removing mature, senescent, stressed or damaged pines from the forest. However, Mother Nature didn’t equip the insects with the intelligence to distinguish between such trees and those in commercial forests, timber yards and much-loved gardens. Beetle attacks can cause serious problems for forest industry managers, park staff and homeowners, and outbreaks can be extremely disruptive to forest management practices aimed at wood and fibre production.

Symptoms of attack

The first recognised sign of beetle attack on trees is often yellowing or reddening tree crowns. Unfortunately, these symptoms are not usually evident until long after the attacks have begun and the trees may be already dead. Retribution is limited as, by the time that the crown changes colour, most of the bark beetles have completed their life cycle and have emerged from the tree.

Earlier, less prominent symptoms of attack can include white, sawdust-like ‘boring dust’ at the base of trees, or ‘pitch tubes’ projecting from the bark. These tubes consist of a combination of bark particles, wood and sap which the insects expel from their galleries. Upon close observation, the small central hole where the beetles enter or exit the tree may be identified.

Gypsy moth trapping

A pheromone trapping system for gypsy moth was implemented in New Zealand in 1993. Trade and travel practices allow the pest to hitchhike to the border, and gypsy moth egg masses and larvae have been intercepted at New Zealand’s ports on shipping containers, ship’s structures and (more recently) on used cars imported from Japan. At no stage have any moths been found in traps.

Traps are deployed in early November and removed at the end of the following April, following the expected flight periods (if populations were present in New Zealand). Traps are located in high-risk sites such as ports, container devanning sites and imported car storage yards, and are checked fortnightly.

Although no gypsy moths have ever been found within New Zealand’s border, trapping will continue as an early-warning monitoring device. As well as reassuring New Zealanders that we remain gypsy moth-free, the negative trap results provide a positive indication to our trading partners that the pest is not present here.

Mark Ross, National Adviser, Forest Pest Surveillance and Response, MAF Forest Biosecurity, phone 04 498 9611, fax 04 498 9888, rosm@govt.nz

www.maf.govt.nz/gypsy-moth
Soybean cyst nematode (SCN) is a soil-borne pest that can severely impact soybean production. SCN populations can be managed through a combination of cultural practices and chemical controls. Here are some key points to consider:

1. **Cultural Practices**
 - **Rotation**: Growing non-host crops (e.g., corn, wheat) can reduce SCN populations.
 - **Crop Rotation**: Incorporating fallow land or using a rotation with a non-host crop for at least 3 years can help reduce SCN populations.
 - **Grazing**: Rotational grazing can help manage SCN populations by reducing the availability of SCN-preferred hosts.

2. **Chemical Controls**
 - **Nematicides**: These are soil-applied chemicals that can kill or suppress SCN populations. They are most effective when applied in the fall or during the fallow period.
 - **Rotation**: Using nematicides on a rotational basis can help in managing SCN populations.

3. **Monitoring**
 - Regular monitoring of SCN populations is crucial to determine the need for control measures.
 - **Sampling**: Collect soil samples from the field and analyze them to determine SCN population levels.

In conclusion, managing SCN populations requires a combination of cultural practices and chemical controls. Continuous monitoring and adaptation to local conditions are essential for effective SCN management.
Action on new plant pests

A recent spate of exotic plant and insect notifications has kept MAF Plants Biosecurity staff busy. Listings are provided in the Directory of new organism records in this issue of Biosecurity (see page 23).

Notifications requiring significant input were:
- two new to New Zealand insects: eastern flower thrips (Frankliniella intonsa) and lettuce aphid (Nasonovia ribisnigri)
- two notifiable aquatic weeds: salvinia (Salvinia molesta) and water hyacinth (Eichhornia crassipes); and
- kudzu vine (Pueraria montana var. lobata).

Eastern flower thrips; a horticulture pest

George Gill, Technical Adviser Plants Pest Management – Plants Biosecurity says MAF was informed of the detection of eastern flower thrips after an Australian interception of this species on New Zealand capsicum from south of Auckland, earlier this year.

Further samples of eastern flower thrips were submitted to MAF on strawberries from Coatesville and dahlia, sunflower and capsicum plants from Cledendon.

“We are working with the Department of Agriculture, Fisheries and Forestry – Australia,” George says. “We have requested the Australian samples for examination by National Plant Pest Laboratory (NPPRL) entomologists here in New Zealand. Although these thrips are distributed throughout the world, and are believed to be the most common thrips infecting flowers, they had not previously been recorded in either Australia or New Zealand.

“We are currently searching our own collections for specimens that may have been misidentified as the related species Frankliniella occidentalis.”

He says it is not known how the insect got here and, because the New Zealand sites are widely distributed and the thrips are possibly distributed throughout most of Auckland, eradication is not possible or feasible.

Eastern flower thrips has had an economic effect on strawberry crops in Italy and the United Kingdom, lucerne crops in Czechoslovakia and nectarines in Greece. They cause direct damage by feeding, e.g. skin ‘russetting’ of nectarines, diminished seed set in lucerne, and distorted fruiting in strawberry crops.

George says MAF has informed industry that it is not possible to eradicate this pest, and the only feasible way to manage it will be to apply commercially based pest management practices. This discovery should have a limited effect on international trade because the species is already well established world-wide.

Lettuce aphid established in Canterbury

The lettuce aphid (Nasonovia ribisnigri), was detected on lettuce at Marshlands, Christchurch on 2 April 2002 and new infestations have been detected in Canterbury at Woodend, Harewood, Lincoln, Irwell, Prebbleton, Courtenay and the Horotane Valley. On 7 May MAF was informed of the presence of lettuce aphid in south Auckland.

“MAF has informed the Vegetable Growers Federation (VegFed) and a representative of the currant industry of the presence of this aphid and advised them that given the aphid’s distribution and biology, eradication is not feasible. VegFed has agreed to contact lettuce growers in other areas such as Pukekohe and Gisborne to determine if the aphid has been noticed in these regions,” George says.

“MAF has been unable to determine how the aphid arrived here as it is not known to occur in Australia so can not have blown here. The only known importations of Ribes plant material (since1998) have been into approved facilities in February 2002.

“Overseas results have shown there are ways of controlling the aphid and MAF has informed VegFed and grower representatives who will make their own recommendations to growers.”

Aphids can reproduce both sexually and asexually on different hosts. Over-wintering eggs hatch on Ribes hosts and after a period, winged forms disperse to lettuce crops where they reproduce asexually. In autumn the aphid again returns to the Ribes host plants where they reproduce sexually and lay eggs on buds and stems. In warm climates the aphid can remain in the sexual form over winter on lettuce.

The aphids have a very short life cycle which enables populations to build up very rapidly and they can disperse extremely efficiently in the wind. They are inevitably well established, making eradication unfeasible.

Salvinia and water hyacinth

MAF was also notified of a salvinia infestation discovered by two weed scientists who noticed the plant floating in the Kaituna River in the Bay of Plenty.

A sample was confirmed as salvinia and MAF instigated an investigation through AgriQuality New Zealand. The source was established as a 50 square metre pond on private property, covered in salvinia to a depth of 30cm.

George says the pond flowed into a two kilometre drain, also heavily infested, and from there the drain fed directly into the Kaituna River.

“Environment Bay of Plenty (BOP) staff immediately organised spraying of the infestation and traced the origins back
Pests: Biosecurity threats to the Chatham Islands

The Chatham Islands Conservation Board in conjunction with the Department of Conservation has released a colour booklet: Unwanted Pests: Biosecurity threats to the Chatham Islands.

The booklet, designed to raise awareness amongst Chatham Islanders about the biosecurity threat to the islands of some mainland New Zealand plants and animals, has been supplied free to all residents.

The publication outlines several species of plants and animals with the potential to have severe detrimental effects on the Chathams. This threat is not only to terrestrial conservation values but also to agricultural production and to the marine environment.

This threat was highlighted recently with the sinking of the Seafresh 1 in Hanson Bay when the Asian seaweed, Undaria was detected on its hull. This seaweed poses a significant threat to the Chathams’ inshore fisheries and it has substantially changed the natural character of many areas where it has been found in New Zealand (see Biosecurity 21:23, 34:4).

Because of the positive response received for this booklet, and an earlier Chatham Islands booklet on endemic plants, there are plans to release further publications on Chatham Islands birds and another on the islands’ plants.

Community Relations officer Alex McKillop holds a copy of the colour booklet that the Department of Conservation has released in the Chatham Islands to raise awareness of the threat to the Islands from unwanted pest animals and plants.

George Gill says the Northland Regional Council and Environment Bay of Plenty are already taking action against vines they know of and, after a publicity campaign, have received no further notifications of the plant.

MAF is currently in the process of declaring kudzu an unwanted organism under the Biosecurity Act.

The vine is a deciduous plant capable of smothering other plants and trees under a solid blanket of leaves. The supporting stems can get quite large and will break branches and uproot entire trees through sheer force of weight. The root system can weigh up to 200kg and as many as 30 vines can grow from a single root crown. Kudzu requires high levels of rainfall and consistent summer temperatures in excess of 27°C to flourish. Winter frosts can cause the vine to die back to the root.

Kudzu vine has been discovered growing at three sites in the Bay of Plenty. A single specimen of the plant was also detected in Northland at Mangawhai and a single potted specimen was discovered and destroyed in the Waikato. The infestations in the Bay of Plenty covered areas up to 3000 square metres, while the Northland plant covered about 30 square metres.

The Northland Regional Council and Environment Bay of Plenty are already taking action against vines they know of and, after a publicity campaign, have received no further notifications of the plant.

MAF is currently in the process of declaring kudzu an unwanted organism under the Biosecurity Act.

George Gill says the Northland Regional Council and Environment Bay of Plenty are already taking action against vines they know of and, after a publicity campaign, have received no further notifications of the plant.

Kudzu vine has been discovered growing at three sites in the Bay of Plenty. A single specimen of the plant was also detected in Northland at Mangawhai and a single potted specimen was discovered and destroyed in the Waikato. The infestations in the Bay of Plenty covered areas up to 3000 square metres, while the Northland plant covered about 30 square metres.

The vine is not a new to New Zealand species, having been introduced in 1944 by the then Public Works Department for erosion control. However, kudzu failed to establish sufficiently as the summer weather was too dry. The original sites have been examined and found to be free of the vine.

Kudzu vine is a deciduous plant capable of smothering other plants and trees under a solid blanket of leaves. The supporting stems can get quite large and will break branches and uproot entire trees through sheer force of weight. The root system can weigh up to 200kg and as many as 30 vines can grow from a single root crown. Kudzu requires high levels of rainfall and consistent summer temperatures in excess of 27°C to flourish. Winter frosts can cause the vine to die back to the root.

George Gill says the Northland Regional Council and Environment Bay of Plenty are already taking action against vines they know of and, after a publicity campaign, have received no further notifications of the plant.

MAF is currently in the process of declaring kudzu an unwanted organism under the Biosecurity Act.
After a decade’s negotiation, New Zealand has approved access to all varieties of Australian tomatoes.

The amendment to the current import health standard (IHS) for the importation of Australian tomatoes into New Zealand was signed on Monday 27 May by MAF’s Director of Plants Biosecurity, Richard Ivess. Richard says the agreement is the result of considerable effort on behalf of the Department of Agriculture, Fisheries and Forestry – Australia (AFFA) to ensure that effective treatment systems were in place to protect New Zealand from Queensland fruit fly.

“We needed clear assurances that the Australian proposal to extend the IHS from the current five approved varieties of tomatoes did not in anyway jeopardise New Zealand’s biosecurity. “I am more than satisfied that the treatment system approach advocated by AFFA meets all our requirements for preventing the establishment of Queensland fruit fly in New Zealand.

“We have obligations under the WTO Sanitary and Phytosanitary (SPS) Agreement and the International Plant Protection Convention to consider new proposals and, if technically justified, implement them as appropriate,” he says.

The proposed system includes all the current phytosanitary import requirements, including post harvest chemical dipping, for the five varieties of tomatoes covered by the present IHS, as well as additional measures to take account of any perceived differences with the additional varieties.

AFFA will be accountable to New Zealand MAF for the entire programme including documentation, grower registration, chemical treatment, field treatment, audit for efficacy of field treatment, post treatment security and AFFA inspection and audit compliance.

Additionally, the bulk of exports to New Zealand would be during the winter when the climatic conditions would not be conducive for the establishment of Queensland fruit fly.

Over the past eight years, there have been 160 million tomatoes imported into New Zealand without any indication of Queensland fruit fly eggs/larvae. Australian tomatoes are the only product imported into New Zealand on an individual variety basis. All other produce requiring treatment is imported on a product basis – paw paws or mangoes for example.

Richard says the greatest risk for pest incursion actually exists with passengers arriving at the border – not with imported produce. This risk has been substantially reduced by the introduction at the border of x-ray machines, beagle detector dogs and the implementation of the instant fine scheme.

Matthew Spence, National Adviser International Operations Imports, Plants Biosecurity, phone 04 498 9852, fax 04 474 4257, spencem@maf.govt.nz

Esther Maxim was
appointed as
Administration
Assistant, Plant
Import Team, for
Plants Biosecurity in
May. Esther has
recently been working
for Credit Suisse First Boston. She began
her career as a primary school teacher
but moved into administration on her
return from overseas.

Eleanor Morrison joined the Plants Pest
Management team as an administration
assistant at the end of April. She
previously worked as
an administration
officer at Computer
Systems
Implementation
Limited. Eleanor
began her working life
as a horticulturist for
the Dunedin City Council and has
maintained a strong interest in the field.
What price cheap food?

Most people, if asked, would consider cheaper food prices to be a good thing. However, the premise of a recent United Kingdom meeting, organised by the British Society of Animal Science and the Scottish Centre for Animal Welfare Sciences, questioned the price society is willing to pay for cheap food.

Participants considered trends in food prices. Today, people generally have access to a better range of quality foods at lower prices than ever before. The drive for cheap food has come from policy makers, consumers and from competition between producers and retailers. But the question was raised whether the time has come to stop pushing forever towards increased food production at lower prices. It was suggested that food pricing policies should take into account other, non-monetary factors.

The negative effects of cheap food production were discussed. These include adverse effects on the environment, animal welfare, food safety and the sustainability of farming communities (within the first and third worlds). Participants were asked to consider whether our society could and should pay more for food. Dr Mike Appleby from the Humane Society of the United States argued that most, but not all, people could sustain moderate increased costs and many, even low wage earners, are already paying significantly more for convenience and pre-packaged food. Other niche markets for higher priced organic, GM free and animal welfare friendly goods have developed for those demonstrably willing and able to pay more.

Another key message from the meeting was recognition that the incentive for change can not be placed solely upon the shoulders of the producer. Many farmers, including those within the United Kingdom, are struggling to survive. If society wants safe, environmentally and animal welfare friendly, low cost food then the impetus must come from outside the farm gate.

Policy options discussed to address this issue included government funding assistance to cover capital costs of moving to animal welfare friendly housing systems. This is currently being applied in the European Union to facilitate the move from stalls to group housing for dry sows.

Speakers at the meeting were drawn from the Humane Society of the United States, the UK National Farmers’ Union, the fair trade group Traidcraft Exchange, and the Macaulay Institute. The meeting, held on 8 April 2002, was attended by about 80 people including animal welfare representatives, scientists, academics and students. Two New Zealand MAF officials were present.

Transtasman animal welfare dialogue

The sixth meeting of the transtasman Animal Welfare Committee (AWC) was held in Queensland on 21 and 22 March. An earlier committee, the Subcommittee on Animal Welfare (SCAW), was established in 1980, but, following a review of committees in 1996, AWC was formed with these terms of reference:

1. to advise and recommend policy, as necessary, on all issues relating to animal welfare as these affect agricultural industries;
2. to identify emerging animal welfare issues of strategic importance for policy development in consultation with industry and other stakeholders;
3. to facilitate the development, implementation and harmonisation of animal welfare standards and legislation;
4. to identify areas of need and advise strategic areas for research on animal welfare;
5. to respond to issues of animal welfare brought to its attention;
6. to provide an annual report including a workplan for the coming year as well as details of outcomes/achievement from the preceding year.

AWC includes representatives from all the Australian states and territories, the federal government and the CSIRO (Commonwealth Scientific and Industrial Research Organisation), in addition to New Zealand. The committee meets once a year, with as much business as possible dealt with out of sessions between meetings and by teleconferences. Topics discussed at the March meeting included:

- role of the Vertebrate Pest Control Committee
- poultry welfare standards
- egg labelling standards
- tail docking of dogs
- laparoscopic artificial insemination of sheep
- religious slaughter
- progress with eight model codes of practice.

David Bayvel, Director Animal Welfare, phone 04 474 4251, fax 04 498 9888, bayveld@maf.govt.nz
The National Animal Ethics Advisory Committee (NAEAC), in conjunction with MAF, last month held a series of one-day workshops entitled ‘Expanding Horizons for AECs’. The workshops were for members of animal ethics committees, and in particular for the external members.

Held in Auckland, Hamilton, Palmerston North, Wellington and Christchurch, the workshops were organised to provide an opportunity for animal ethics committee members to:

- review the legislation governing their role
- network and share experiences
- enhance their skills and explore challenging questions regarding animal welfare in the research, testing and teaching environment.

A total of about 125 people from a variety of backgrounds took part, including:

- lay people
- animal welfare organisation nominees
- veterinarians
- scientists
- animal technicians
- animal ethics committee secretaries.

Topics covered included:

- the Three Rs and humane science
- protocol approval and a culture of care
- what sort of questions to ask in reviewing a protocol
- lay member support
- technicians’ role
- the value of animal models
- duties and responsibilities.

NAEAC members and MAF staff made presentations, including time for question and answer sessions. However, the highlight of the workshops was the session where presenter and former NAEAC member, Dr John Schofield, advised participants that since they were at a workshop, this was the time they had to work! This involved forming three mock animal ethics committees to consider a series of hypothetical applications to the animal ethics committee generously provided by the prestigious ‘University of Norfolk Island’.

There was enthusiastic participation by attendees, who appreciated the opportunity to attend and found it to be a worthwhile experience.

Kate Hellström has been appointed as a policy adviser for the Animal Welfare Group.

Kate Hellström has been appointed as a policy adviser for the Animal Welfare Group. The Animal Welfare Group promotes policies appropriate to society’s expectations for the humane treatment of animals and maintains a central position in the ongoing animal welfare debate. Kate will be providing advice on animal welfare issues, including animal ethics, to the Director Animal Welfare, Group Director Biosecurity Authority and the Minister of Agriculture.

Kate will also be providing secretarial and administrative support to both the National Animal Ethics Advisory Committee (NAEAC) and the National Animal Welfare Advisory Committee (NAWAC).

She holds a Bachelor of Science in Zoology, and a First Class Masters in Resource and Environmental Science. After graduating from Massey, Kate spent some time working at the Veterinary Council of New Zealand, before heading overseas for more than two years. During this time, she worked in London for the Law Society for England and Wales, where she assisted in the implementation of a large IT project. She also travelled extensively through Europe, Asia and Africa.

Kate succeeds Kathryn McKinnon who recently transferred to a position with MAF’s Legal Section.
Animal welfare in airborne Arks

From wetas to whales, most animals can now be transported by air. Many animals being taken to or from New Zealand are transported by air, either in the holds of passenger aircraft, or in dedicated freighter aircraft that resemble modern day Noah's Arks.

Like people, animals travel well by air, and for geographically isolated countries like ours, air travel is usually the preferred means of transporting animals into or out of New Zealand.

Ensuring the welfare of animals during air transport is of the utmost importance, both from the animals’ viewpoint and from the owners’ or buyers’ desire to ensure that animals arrive fit and healthy. The rules and regulations governing the welfare of animals during air transport are set by the International Air Transport Association (IATA).

IATA’s principal role is the development of standards and procedures to facilitate the safe international air transport of animals. Most of the world’s airlines are IATA members and over 80 percent of the freight transported by air is carried by IATA member airlines. Membership of the IATA Board is confined to representatives of airlines. However, representatives from other organisations are accorded observer status, with equal speaking rights but no ability to vote.

The New Zealand Ministry of Agriculture and Forestry was represented for the first time at a recent IATA meeting in Montreal, Canada.

A major function of IATA is to produce the Live Animal Regulations which are updated annually and which establish minimum standards and recommendations for a large number of animal species transported by air. These literally range from insects to elephants. The regulations address both generic issues such as container design, the provision of food and water, ventilation, and stocking densities, and also country-specific requirements.

The Live Animal Regulations are binding on all airline members and in addition they are adopted by the Office International des Epizooties (OIE), the European Union, Council of Europe, Convention on International Trade in Endangered Species (CITES), and a large number of countries as the basis of guidelines, regulations and legislation for the transport of animals. In New Zealand, they are recognised through the Animal Welfare Act 1999; all animals (unless exempted) that are transported by air must be a transported in compliance with these regulations.

Observers come from a wide range of agencies including the Department of the Environment, Food and Rural Affairs (formerly UK MAFF), United States Fish and Wildlife Service, United States Department of Agriculture, CITES and the Canadian Food Inspection Agency. In addition, expert advice is provided by the newly formed animal care group, which has representation from the fields of veterinary science and animal behaviour.

New Zealand is a smaller player in the international transport of animals. However, welfare during transport is a high profile issue here because of our geographical isolation and the long distances animals often have to travel to or from here. Our high animal welfare status, both from a legislative and experiential perspective, means that we have much to offer; participation provides an opportunity for New Zealand to provide input into the setting of welfare standards which have world-wide application.

Wayne Ricketts, National Adviser, Animal Welfare, phone 04 474 4726, fax 04 474 4133, ricketts@maf.govt.nz

www.iata.org
www.cites.org
www.oie.org

Update

New import health standards

Frozen Argali (ovis ammon polii) semen into New Zealand from the Singapore zoo

This is a new standard based on the risk analysis “The Use in New Zealand of Imported Reproductive Material Derived from an Argali Sheep”, dated 22 May 2001. The standard is dated 6 May 2002.

Specified products for human consumption containing dairy products, eggs or meat

The following amendments have been made:

- This standard has been amended to include MILO manufactured by Nestlé Foods (Malaysia). Private consignments of dairy products originating from Australia and New Zealand may be imported provided that the products are commercially packaged and sealed within the original packaging.
- Clarification has been made regarding imports of prepared (made-up) bottles of milk based food for infants. The following note has been added to clause 8.12 relating to private consignments of milk based foods for infants:

 NB: up to three made-up milk based food in bottles may accompany an infant.

This is to allow time for parents to get to a store and purchase baby food once they arrive in New Zealand.

This standard is now dated 18 April 2002 and replaces the one dated 25 January 2002.

Specified pig meat products for human consumption from Italy

This is a new standard based on the import risk analysis: Importation into New Zealand of Meat and Meat Products dated March 1991. An assessment of porcine reproductive and respiratory syndrome (PRRS) was also carried out. The relevant...
parties, including the PIB and pork importers, have been consulted. This standard is dated 1 May 2002.

Scoured animal fibre from the United Kingdom

These changes have been made in accordance with the Risk Analysis for Unprocessed Fibre of sheep and goats (1998) and the following amendments have been made:

- The previous standard required that products be derived from animals resident in a zone in which no case of foot and mouth disease has occurred within a 10 km radius within the last 30 days, and from holdings that have been free from foot and mouth disease for the previous 3 months.
- Another option has been added to allow imports of scoured fibre from the United Kingdom that may have been derived from animals prior to 24 January 2002, as this fibre would not comply with the foot and mouth disease freedom statements. The new option added is as follows:
 - The importer must provide documentary evidence that the fibre has been at least 4 weeks in transit to New Zealand or the fibre must be stored in an approved transitional facility for 4 weeks after arrival in New Zealand before being eligible for biosecurity clearance.
- The clause certifying that that the fibre was derived from live animals resident in the United Kingdom or from animals which had been slaughtered in the United Kingdom to produce meat for human consumption (clause 10.8), has been moved from the veterinary certificate to the manufacturer’s declaration. This condition would be difficult for the official veterinarian to certify.
- The following condition has been added (clause 10.9) to the veterinary certificate from the UK:
 The fibre was derived from areas where anthrax was not prevalent at the time of collection.

This condition brings the IHS in line with the risk analysis, which concluded that anthrax is an important zoonosis.

This standard is now dated 7 May 2002 and replaces the one dated 30 April 2002.

Please see Biosecurity 8:4, notifying the public consultation, and in Biosecurity 14:10, notifying completion of the risk analysis.

www.maf.govt.nz/biosecurity/pests-diseases/animals/risk/index.htm#fibre-skins

Equipment used with animals

Amendments have been made to clarify clause 7.3 relating to used saddles, harnesses and other animal equipment from all countries. The amendment was made to prevent misinterpretation of the statement:

“Halters and lead ropes may be released without inspection and treatment provided the animal meets the conditions of importation.”

This clarifies that halters and lead ropes may be released without further requirements but covers and boots must be inspected for ticks and other external parasites.

This standard is now dated 19 April 2002 and replaces the one dated 26 June 2001.

Jessie Chan, Technical Adviser, International Animal Trade, phone 04 498 9897, fax 04 474 4133, chanj@maf.govt.nz

Draft guideline for approval of embryo collection centres exporting ruminant embryos from New Zealand

This document sets out proposed guidelines to be used by official veterinarians when inspecting embryo collection centres wishing to be registered to export ruminant embryos.

In order for ruminant embryos to be eligible for export from New Zealand:

- they must have been collected, processed and stored in a registered embryo collection centre; and
- They must be accompanied by an export certificate in the form agreed between MAF and the importing country.

Comment is sought on this document from interested parties, including exporters of ruminant embryos, team veterinarians and official veterinarians.

Jennie Brunton, Technical Adviser, International Animal Trade, phone 04 474 4116, fax 04 474 4227, bruntonj@maf.govt.nz

www.maf.govt.nz/biosecurity/consultation.htm

Codes of ethical conduct – approvals, notifications and revocations since the last issue of Biosecurity

All organisations involved in the use of live animals for research, testing or teaching are required to adhere to an approved code of ethical conduct.

Codes of ethical conduct approved

- PharmVet Solutions

Notifications to MAF of minor amendments to codes of ethical conduct Nil

Notifications to MAF of arrangements to use an existing code of ethical conduct

- Ward, Christopher G (to use Waikato Institute of Technology’s code)

Codes of ethical conduct revoked or arrangements terminated

- Feilding Agricultural High School (to use Massey University's code)
- Parnell Laboratories NZ Ltd (to use Lincoln University’s code for South Island projects)
- PharmVet Solutions (to use South Greta Farms’ code)

Approvals by the Director-General of MAF for the use of non-human hominids Nil

Approvals by the Minister of Agriculture of research or testing in the national interest Nil

Linda Carson, Senior Policy Adviser, Animal Welfare, phone 04 470 2746, fax 04 498 9888, carsonsl@maf.govt.nz
Draft code of welfare for layer hens

The National Animal Welfare Advisory Committee (NAWAC) wishes to advise that a code of welfare for layer hens has been drafted to replace the Code of Recommendations and Minimum Standards for Layer Hens, which was deemed as a code of welfare under the Animal Welfare Act 1999. The draft code will be released for public consultation during the second half of June and the consultation period will extend for 30 working days from the date of notification in the public notices column of major daily newspapers.

Wayne Ricketts, National Adviser Animal Welfare, phone 04 474 4276, fax 04 474 4133, rickettsw@maf.govt.nz

www.maf.govt.nz/animal-welfare

MAF seeks comments on GM testing for imported seeds

MAF has released a discussion paper looking at ways to ensure that genetically modified (GM) seeds are not released into the New Zealand environment through seeds imported for sowing. No GM crops are grown commercially in New Zealand and no GM seeds have been approved for release.

The paper Border control for genetically modified (GM) seeds proposes protocols to test imported Zea mays seeds (maize, sweet corn and popcorn) and Brassica napus var. oleifera seeds (canola and oilseed rape) for the presence of GM seeds. These protocols are available from Gerard Clover at the address below.

The main proposals in the paper are:

- No GM testing or auditing requirements for seed imported from countries that do not produce GM varieties (MAF would seek declaration from the appropriate regulatory authority); and
- Auditing to ensure that every third consignment of seed imported from other countries is tested for GM seeds (testing can be performed offshore or at the New Zealand border).

MAF has drafted similar protocols for soybean (Glycine max) and crook-neck squash/zucchini (Cucurbita pepo) and is seeking further information to decide whether these are necessary.

MAF is seeking feedback about these proposals and would like to receive comments from people who are interested in or affected by them. The deadline for comments is close of business, Friday 28 June 2002. The discussion paper is available from MAF directly, or on the MAF website (below).

David Wansbrough, Senior Policy Analyst, phone 04 470 2768 fax 04 473 0118, david.wansbrough@maf.govt.nz

Gerard Clover, National Adviser, Genetically Modified Organisms Plants, phone 04 470 2743, fax 04 470 4257, cloverg@maf.govt.nz

www.maf.govt.nz/gm

Draft standard for consultation

The following draft standard is available for public consultation. The draft standard is based on a review of MAFRA 152.04.03F, Holding and Processing Transitional Facilities.

Brendan McDonald, Programme Coordinator, Border Management Group, phone 04 474 4204, fax 04 470 2730, mcdonaldb@maf.govt.nz

www.maf.govt.nz/biosecurity/consultation.htm

Submissions must be received by 1 August 2002.

International standard for wood packaging

The International Standard for Phytosanitary Measures (ISPM) publication 15: Guidelines for Regulating Wood Packaging Material in International Trade was adopted at a meeting of the Fourth Interim Commission on Phytosanitary Measures (ICPM) in Rome, 11-15 March 2002.

The adoption of an international standard for wood packaging was considered an important step in harmonising global application of phytosanitary measures for wood packaging (Biosecurity 29:12). The ICPM’s adoption of this standard opens the way for a worldwide reduction in the biosecurity risk of wood packaging materials used in international trade.

The ICPM has approved two treatments for use on wood packaging material: a heat treatment (HT) that requires heating the core of the wood packaging to 56 C for more than 30 minutes; or a 16 hour methyl bromide (MB) fumigation treatment at temperature-dependent dosage rates. Appropriately treated wood packaging material will have to be marked with the symbols corresponding to the country of origin, treatment used and the producer of the wood packaging material.

The way forward

It is anticipated that most of New Zealand’s major trading partners will take more than 18 months to align and implement their own standards with the ISPM for wood packaging. The alignment of New Zealand’s import requirements with the ISPM will depend on the outcome of an import risk analysis on wood packaging material arriving in New Zealand.

For New Zealand wood packaging manufacturers wishing to comply with the ISPM for wood packaging, contact:

Mark Self, National Adviser, Forest Product Export Standards, phone 04 498 9612, selfm@maf.govt.nz

The ISPM and meeting report is available at:

www.ippc.int

Dr Mike Ormsby, National Adviser Import Health Standards, MAF Forest Biosecurity, phone 04 498 9630, fax 04 470 2741, ormsbym@maf.govt.nz

Draft standard for consultation

The following draft standard is available for public consultation. The draft standard is based on a review of MAFRA 152.04.03F, Holding and Processing Transitional Facilities.

Brendan McDonald, Programme Coordinator, Border Management Group, phone 04 474 4204, fax 04 470 2730, mcdonaldb@maf.govt.nz

www.maf.govt.nz/biosecurity/consultation.htm

Submissions must be received by 1 August 2002.
New organism records: 30/03/02 – 17/05/02

Biosecurity is about managing risks protecting the New Zealand environment and economy from exotic pests and diseases. MAF Biosecurity Authority devotes much of its time to ensuring that new organism records come to its attention, to follow up as appropriate. The tables below list new organisms that have been established, new hosts for existing pests and extension to distribution for existing pests. The information was collated by MAF Forest Biosecurity and MAF Plants Biosecurity during 30/03/02 – 17/05/02, and held in the Plant Pest Information Network (PPIN) database. Wherever possible, common names have been included.

PLANTS BIOSECURITY RECORDS 30/03/02 – 17/05/02

Validated new to New Zealand reports:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercospora alchemillicola (cercospora leaf spot)</td>
<td>Alchemilla mollis (lady’s mantle)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This is a newly described fungus known only from Auckland.</td>
</tr>
<tr>
<td>Entylomenia gerani (no common name)</td>
<td>Geranium sp. (no common name)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This is a newly described fungus known only from Auckland.</td>
</tr>
<tr>
<td>Gonatophragmium obscurum (no common name)</td>
<td>Psidium guajava (yellow guava)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This is a newly described fungus known only from Auckland.</td>
</tr>
<tr>
<td>Pseudocercospora cymbidicola (Pseudocercospora leaf spot)</td>
<td>Cymbidium sp. (cymbidium orchid)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This fungus is newly described, but has been present in New Zealand for more than 20 years.</td>
</tr>
<tr>
<td>Franklinia intonsa (Eastern flower thrips)</td>
<td>Fragra x ananassa (strawberry)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This thrips is widely distributed throughout the world, and has been recorded from over 150 plant species. It is known to be transported by the cut flower trade.</td>
</tr>
<tr>
<td>Pseudocercospora camellicola (Pseudocercospora leaf spot)</td>
<td>Camellia sp. (camellia)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This fungus has been recorded from Hong Kong, Malawi, Mauritius and Nepal. It produces a leaf spot and is of little significance.</td>
</tr>
<tr>
<td>Aphidius fimetarius (dung beetle)</td>
<td>Nectria haematococca</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This dung beetle is associated with cattle dung and was detected over a large area of the Port Hills. It is also known from the Great Barrier Island.</td>
</tr>
<tr>
<td>Nasonovia ribisnigrri (lettuce aphid)</td>
<td>Lactuca sativum (lettuce)</td>
<td>Mid Canterbury</td>
<td>Crop and Food Research</td>
<td>This aphid over-winters on currants, and is found in Canterbury between the Ashley River in the north and the Waimakariri River in the south.</td>
</tr>
<tr>
<td>Albugo bliti (no common name)</td>
<td>Amaranthus ludivus (purple amaranth)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This fungus produces white pustules on the leaves of a common weed species.</td>
</tr>
<tr>
<td>Pseudocercospora gericola (no common name)</td>
<td>Geum sp. (Avens)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This fungus is of minor importance on its host, producing a leaf spot. Its current distribution includes the USA, Europe and China.</td>
</tr>
</tbody>
</table>

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosellinia necatrix (white rot)</td>
<td>Olea europaea (olive)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include grape, Prunus spp., apple, kiwifruit, blueberry and Narcissus sp.</td>
</tr>
<tr>
<td>Franklinia intonsa (Eastern flower thrips)</td>
<td>Capsicum annuum (capsicum), Helianthus annuus (sunflower), Dahlia coccinea (dahila),</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include Fragaria x ananassa.</td>
</tr>
<tr>
<td>Pseudomonas fluorescens (no common name)</td>
<td>Lycopersicon esculentum (tomato)</td>
<td>North Canterbury</td>
<td>NPPRL</td>
<td>Other PPIN hosts include capsicum, garden pea, potato, onion, prairie rose, black passionfruit, tamarillo, carrot, poplar, calla lily, yam, and black currant.</td>
</tr>
<tr>
<td>Pythium sp. (pythium root rot)</td>
<td>Buxus sp. (box)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>This fungus has a wide host range and geographic distribution.</td>
</tr>
<tr>
<td>Nectria haematococca (dry rot, root rot, stem rot)</td>
<td>Sanderosia aurantiaca (Chinese lantern lily, Chinese lanterns)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: kiwifruit, onion, asparagus, capsicum, Citrus sp., Iris sp., cucurbits, cabbages tree, cymbidium orchid, tamarillo, carrot, persimmon, kava beak, cattan, strawberry, rose, tomato, Narcissus sp., olive, peony, passionfruit, avocado, parsley, runner bean, pea, yucca, Prunus sp., pear, eggplant, pepino, potato, spinach, wheat, tulip, blueberry, bean, Vitis sp., and calla lily.</td>
</tr>
<tr>
<td>Pseudomonas syringae pv. syringae (bacterial blast, brown spot)</td>
<td>Hydrangea sp. (hydrangea), Cucurbita moschat (butternut squash)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: kiwifruit, Citrus spp., apple, olive, feijoa, cucurbits, persimmon, tomato, avocado, dwarf bean, garden pea, Prunus sp., pear, nashi, rose and grape.</td>
</tr>
<tr>
<td>Pleospora tarsa (sooty mould)</td>
<td>Paenedon sp. (peony rose), Cichorchus intybus (chicory)</td>
<td>North Canterbury</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: asparagus, eucalypt, feijoa, oriental lily, broad bean, tomato, parsley, passionfruit and nectarine.</td>
</tr>
<tr>
<td>Nectria tawa (no common name)</td>
<td>Vitis vinifera cv. Pinot Noir Clone 115</td>
<td>Nelson</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: Lilium sp., peony and mododendron.</td>
</tr>
<tr>
<td>Potato spindles tuber viroid</td>
<td>Capsicum sp. (capsicum, pepper)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: tomato.</td>
</tr>
<tr>
<td>Colletotrichum acutatum (anthracnose)</td>
<td>Olea europaea (olive)</td>
<td>Hawke’s Bay</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: kiwifruit, camellia, Capsicum spp., watermelon, Citrus spp., pumpkin, cymbidium orchid, tamarillo, camation, persimmon, loquat, feijoa, strawberry, winter rose, tomato, macadamia, apple, oleander, passionfruit, avocado, peach, Japanese plum, pear, nashi, azalea, blueberry, broad bean and grape.</td>
</tr>
<tr>
<td>Fusarium culmorum (fusarum leaf spot)</td>
<td>Helleborus orientalis (hellebore, winter rose)</td>
<td>Dunedin</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: kiwifruit, onion, asparagus, oats, cauliflower, capsicum, rose, Chrysanthemum, cucurbits, Cymbidium sp., tamarillo, carrot, cattan, strawberry, barley, tomato, apple, lucene, peony, passionfruit, dwarf bean, garden pea, Prunus sp., potato, spinach, wheat, maize, grape, blueberry, and calla lily.</td>
</tr>
</tbody>
</table>
PLANTS BIOSECURITY RECORDS 30/03/02 – 17/05/02 continued

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coscinoptera improbana (guava moth)</td>
<td>Psidium guajava (tropical guava), Citrus limon (lemon), Feijoa sellowiana (feijoa), Prunus persica (peach), Pyrus pyrifolia (nashi)</td>
<td>Northland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: mandarin, loquat, macadamia and European plum.</td>
</tr>
<tr>
<td>Pseudocercospora atromarginalis (pseudocercosporella leaf mould)</td>
<td>Solanum chenopodioides (velvety nightshade)</td>
<td>Waikato</td>
<td>NPPRL</td>
<td>No other hosts recorded in PPIN.</td>
</tr>
<tr>
<td>Aphelenchoids ritzemabosi (chrysanthemum foliar nematode)</td>
<td>Salvia lyrata (lyre-leaf sage), Liguaria tussilaginoides (leopard plant), Eryngium tricuspidatum</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This nematode has a wide geographical distribution and host range.</td>
</tr>
<tr>
<td>Aphelenchoids fragariae (foliar nematode)</td>
<td>Petasites fragrans (winter heliotrope), Potentilla sp. (cinquefoil), Diospyros kaki (persimmon)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This nematode has a wide geographical distribution and host range.</td>
</tr>
<tr>
<td>Botryotinia fuckeliana (bunch rot, stem blight)</td>
<td>Bupleurum sp. (hare's ear)</td>
<td>Wellington</td>
<td>NPPRL</td>
<td>This fungus has a wide host range and geographic distribution.</td>
</tr>
<tr>
<td>Gibberella pulicaris (no common name)</td>
<td>Clantius punicus (kaka beak)</td>
<td>Wellington</td>
<td>NPPRL</td>
<td>Other PPIN hosts include: tomato, cucumber, garden pea, carnation, grape, perennial ryegrass, garlic, potato, feijoa, nectarine, persimmon, avocado, kiwifruit, passionfruit, tamarillo strawberry and asparagus.</td>
</tr>
</tbody>
</table>

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrichonotus sordidus (Flores weevil)</td>
<td>Medicago sativa (lucerne)</td>
<td>Mid Canterbury</td>
<td>AgResearch</td>
<td>No other distributions recorded in PPIN.</td>
</tr>
<tr>
<td>Atrichonotus taeniatus (Little fringed weevil)</td>
<td>Medicago sativa (lucerne)</td>
<td>Mid Canterbury</td>
<td>AgResearch</td>
<td>No other distributions recorded in PPIN.</td>
</tr>
<tr>
<td>Melampsora ricii (rust of castor oil plant)</td>
<td>Ricinus communis (lucerne)</td>
<td>Bay of Plenty</td>
<td>NPPRL</td>
<td>Other distributions recorded in PPIN include Auckland.</td>
</tr>
<tr>
<td>Gibberella pulicaris (no common name)</td>
<td>Clantius punicus (kaka beak)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>Other distributions recorded in PPIN include Northland, Auckland, Bay of Plenty, Taranaki, Hawke's Bay, Wellington, Nelson, Marlborough, North Canterbury, South Canterbury and Dunedin.</td>
</tr>
</tbody>
</table>

ANIMAL BIOSECURITY RECORDS 30/03/02 – 17/05/02

Validated new to New Zealand reports:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polistes olivaceus (Oriental paper wasp, Pacific Island hornet)</td>
<td>Centaurea sp. (Knapweed)</td>
<td>Marlborough Sounds</td>
<td>National Plant Pest Reference Laboratory</td>
<td>A single, adult female and a suspect nest were found in a residential garden in Picton. No further specimens have been found, despite a search of the property and a community alert. Surveillance will resume in the spring. It is doubtful whether Polistes olivaceus would survive a winter in Picton.</td>
</tr>
</tbody>
</table>

FOREST BIOSECURITY RECORDS 30/03/02 – 17/05/02

Validated new to New Zealand reports:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercospora nagalessii (cercospora leaf spot)</td>
<td>Chamaecyrtis palmenis (tree lucerne)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td></td>
</tr>
<tr>
<td>Pseudocercospora myopori (no common name)</td>
<td>Myoporum laetum (ngaio)</td>
<td>Auckland</td>
<td>National Plant Pest Reference Laboratory</td>
<td>* This was incorrectly recorded as Pseudocercospora myopori in the last publication.</td>
</tr>
</tbody>
</table>

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrosarus nigricollis (no common name)</td>
<td>Agonis flexuosa (peppermint tree)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>No other hosts recorded in PPIN.</td>
</tr>
<tr>
<td>Acrocercops lacinia (black butt leaf miner)</td>
<td>Eucalyptus obliqua (messmate, messmate stringy bark)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include: Eucalyptus bridgesiana, yellow box, shining gum, red flowering gum, red ironbark, Sydney blue gum, blackbutt, Tasmanian blue gum, white peppermint, red gum, tailow wood, and bush box.</td>
</tr>
<tr>
<td>Acrocercops lacinia (black butt leaf miner)</td>
<td>Eucalyptus delegatensis (alpine ash)</td>
<td>Taupo</td>
<td>Forest Research</td>
<td>Other PPIN hosts include: Eucalyptus bridgesiana, yellow box, shining gum, red flowering gum, red ironbark, Sydney blue gum, blackbutt, Tasmanian blue gum, white peppermint, red gum, tailow wood, and bush box.</td>
</tr>
</tbody>
</table>

Continued on back cover
New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytophthora cactorum (leather rot,</td>
<td>Alnus cordata (Italian</td>
<td>Mid Canterbury</td>
<td>National Plant Pest Reference Laboratory</td>
<td>Other PPIN Hosts include: strawberry, chestnut, feijoa, white clematis, apple, pear, apricot, peach, plum cherry, nashi, parsy, nectarine, Gypsophila sp., Rosa sp. and Trifoliata rootstock.</td>
</tr>
<tr>
<td>phytophthora collar rot, phytophthora crown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rot, phytophthora root rot)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylosticta spinarum (no common name)</td>
<td>Cupressus sempervirens</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include: Lawson’s cypress, kaikawaka and Californian redwood.</td>
</tr>
<tr>
<td>(San Jose scale)</td>
<td>(Mediterranean cypress,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swane’s golden pencil pine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadraspispidius perniciosus (San Jose scale)</td>
<td>Acmena smithii (Acmena,</td>
<td>Waikato</td>
<td>Forest Research</td>
<td>Other PPIN hosts include grape, apple, kiwifruit, monkey apple, Citrus grandis hybrid, tangelo, orange, Prunus sp., plum, Japanese plum, peach, nectarine, pear and nashi.</td>
</tr>
<tr>
<td></td>
<td>illy-pilly, monkey apple,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white monkey apple)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniothyrium ovatum (no common name)</td>
<td>Eucalyptus leucocarpon</td>
<td>Wellington</td>
<td>Forest Research</td>
<td>No other hosts recorded in PPIN.</td>
</tr>
<tr>
<td></td>
<td>(no common name)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colletotrichum acutatum (anthracnose, bitter</td>
<td>Castanea sativa (Chestnut)</td>
<td>Bay of Plenty</td>
<td>National Plant Pest Reference Laboratory</td>
<td>Other PPIN hosts include kiwifruit, crow garlic, camellia, Capsicum spp., mountain paepaw, babaco, white sapote, watermelon, Citrus spp., pumpkin, quince, cymbidium orchid, tamarillo, casana, turutu, carnation, persimmon, loquat, eucalypt, feijoa, strawberry, winter rose, day lily, tomato, macadamia, apple, mealie, passionfruit, Pelargonium sp., avocado, peach, Japanese plum, pear, nashi, azalea, rhododendron, Chinese hone tree, blueberry, broad bean and grape.</td>
</tr>
<tr>
<td>rot)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strepsicrates macroptetana (Eucalyptus leaf</td>
<td>Melaleuca fulgens (fiery</td>
<td>Wellington</td>
<td>Forest Research</td>
<td>Other PPIN hosts include silver dollar tree, white ash, narrow leaved black peppermint, mountain ash, Eucalyptus sp., and feijoa (casual relationship).</td>
</tr>
<tr>
<td>roller)</td>
<td>bottlebrush, scarlet honey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>myrtle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudocercospora myopari (no common name)</td>
<td>Myoporum insulare x laetum (no common name)</td>
<td>Auckland</td>
<td>National Plant Pest Reference Laboratory</td>
<td>Other PPIN hosts include: Ngai.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension to distribution reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Host</td>
<td>Location</td>
<td>Submitted by</td>
<td>Comment</td>
</tr>
<tr>
<td>Pseudodentes fraggati (Moreton Bay Fig wasp)</td>
<td>Ficus macrophylla (Moreton</td>
<td>Taranaki</td>
<td>Forest Research</td>
<td>No other distributions recorded in PPIN.</td>
</tr>
<tr>
<td></td>
<td>Bay fig)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematus oligospilus (European sawfly,</td>
<td>Salix sp. (willow)</td>
<td>Dunedin</td>
<td>National Plant Pest Reference Laboratory</td>
<td>Other distributions in PPIN include: Auckland, Bay of Plenty, Gisborne, Mid Canterbury and Waikato.</td>
</tr>
<tr>
<td>willow sawfly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrocercops lacinella (black butt leaf miner)</td>
<td>Eucalyptus delegatensis</td>
<td>Taupo</td>
<td>Forest Research</td>
<td>Other distributions in PPIN include: Auckland, Bay of Plenty, Cromandel, Hawkes’ Bay, Northland and Waikato.</td>
</tr>
<tr>
<td></td>
<td>(alpine ash)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudocercospora myopari (no common name)</td>
<td>Myoporum laetum (Ngai)</td>
<td>Wellington</td>
<td>Forest Research</td>
<td>Other distributions in PPIN include: Auckland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudocercospora myopari (no common name)</td>
<td>Myoporum laetum (Ngai)</td>
<td>Bay of Plenty</td>
<td>Forest Research</td>
<td>Other distributions in PPIN include: Auckland.</td>
</tr>
</tbody>
</table>

Exotic disease and pest emergency hotline: 0800 809 966
Animal welfare complaint hotline: 0800 327 027

www.maf.govt.nz/biosecurity