Also in this issue

Foundations laid for new biosecurity agency
Molecular scientists compare notes
Why reindeer had to stay at home
Animal use in research and teaching: latest stats
Gumleaf skeletoniser
Marine biosecurity capability enhanced
Quarantine – Island style
Citrus canker in Australia
Auditing offshore treatment facilities
Contents

Features

3 Leadership of new biosecurity agency taking shape
4 Foundations of new biosecurity agency are laid
6 Molecular diagnosticians get their heads together
8 Minister considering varroa board of inquiry report
Varroa movement controls to change
9 Not this time, deer …
Biosecurity People: National Animal Welfare Advisory Committee – Bruce Ross
10 OIE General Session supports animal welfare recommendations
11 National Animal Ethics Advisory Committee annual report released
Combined NAWAC and NAEAC meeting
12 Gum leaf skeletoniser: long-term management programme producing results
European Union enlargement necessitates update of import health standards
13 Marine biosecurity gets increased funding
14 Dutch elm disease: 2003/04 season completed
National surveillance programme for aquatic invasive pests
15 Quarantine – Island style
16 Serious citrus disease found in Australia
WTO Committee to review SPS Agreement
17 Plant pest response simulation exercises
18 Approval of offshore treatments for fresh produce

Update

18 New and amended import health standards
19 Amended import health standards: European Union
20 Draft import health standards for consultation
Import health standards revoked
Exotic Disease Response Centre’s surveillance functions
21 Exotic environmental pest investigation and initial response
Codes of ethical conduct – approvals, notifications and revocations since the last issue of Biosecurity
NAWAC Annual Report available
Draft import health standards for consultation – Plants Imports

Directory

23 New organism records: 15/05/04 – 25/06/04

Enquiries about specific articles: Refer to contact listed at the end of the relevant article.

General enquiries (eg, circulation requests or information about MAF’s biosecurity work):
Biosecurity Magazine
MAF Biosecurity Authority
PO Box 2526, Wellington
Phone: 04 474 4100
Fax: 04 498 9888
Email: biosecurity@maf.govt.nz

Editorial enquiries:
Editor: Phil Stewart
Phone: 04 384 4688
Email: biosecurity@wordpict.co.nz

ISSN 1174 – 4618

Cover photo: Diver monitoring weed growth in New Zealand lake.
Photo: Rohan Well, NIWA. See story p14.
Leadership of new biosecurity agency taking shape

By Murray Sherwin, Director-General, MAF

In June 2000, funding was allocated from the Biodiversity Strategy budget to enable a substantial review of the functioning of New Zealand’s biosecurity system. This review was to be conducted by the Biosecurity Council under the chairmanship of John Hellström.

The review process got underway with an extensive consultation process, drawing submissions widely from interested New Zealanders, companies, sector groups, NGOs, and government agencies.

That process highlighted the very high degree of interest in a well-functioning biosecurity system which exists across a broad swathe of New Zealand society.

Biosecurity is one of the oldest of government interventions in New Zealand. In its earliest forms, what we would now label as biosecurity activity was being undertaken by provincial governments around New Zealand from around the mid-1840s.

What started out as essentially an exercise in managing economic risk – aimed at protecting the new colony’s emerging livestock and horticultural industries from pests and diseases – has now emerged in the 21st Century as one of the most complex and challenging areas of modern public policy and operational delivery.

John Hellström’s Biosecurity Council delivered its Biosecurity Strategy for New Zealand to the Minister for Biosecurity in July of 2003. In August of 2003, the Cabinet adopted that strategy and asked me, as Director General of MAF, to put it into effect.

That process is now well in hand. The strategy calls for the creation of a stand-alone Biosecurity Strategy Unit (BSU), drawing on a small permanent staff as well as a number of personnel to be seconded from the four biosecurity agencies. That now has permanent funding and, thus far, the BSU has been operating entirely with seconded staff, under the leadership of Geoff Hicks from the Department of Conservation.

To date, it has concerned itself primarily with assisting the design of the revamped MAF Biosecurity Authority as needed to meet the demands of the new strategy and 21st Century risks and expectations.

Next month, the BSU will come under the leadership of its first permanent Director, Paul Stocks, who joins the group after an impressive career with the Treasury.

Recently, I reconfirmed Barry O’Neil as MAF Assistant Director General, and head of the new Biosecurity Authority. Barry is now engaged full time in the roll-out of the new structure, while “business as usual” in biosecurity is under temporary leadership.

On 1 July, the MAF reference labs, hitherto operating under the banner of the MAF Operations Group, were formally re-assigned to be an integral part of the new Biosecurity Authority.

This enables the scientific knowledge and skills within the labs to be brought fully into the management structure of the Biosecurity Authority, and within an integrated risk and resource management and prioritisation framework.

Also on 1 July, the MAF Quarantine Service (MQS) was removed from the MAF Operations Group, and will henceforth report directly to the Director General. MQS represents a very significant biosecurity resource – around 550 people serving at each of our ports, airports and anywhere else that new risks may be crossing our borders. Each day, these people intercept an extraordinary volume of risk goods from incoming passengers and cargo. It is a key role, and I am determined that those 550 dedicated professionals will be provided with upgraded systems and processes to enable them to do their job to the very highest of standards. I also wish to ensure that MQS is fully integrated into the new biosecurity system.

Over the next 4 months we will be appointing the key leadership team for our new structures. This will be a time of excitement and new starts, but also of some trepidation and turmoil for those concerned. We need to be sure that our usual capability to manage the day to day risk and drama that is biosecurity is not undermined during this period, and that the transition into new structures, new relationships, new systems and new attitudes is achieved seamlessly.

While many on the edges of the biosecurity system will have seen little evidence of change in the past few months, there has been an enormous effort expended by many very skilled, energetic and motivated people, all aimed at giving New Zealand the biosecurity system that those who crafted the strategy document dreamed of. Change is underway, and it will be comprehensive.
Foundations of new biosecurity agency are laid

The foundations are in place for a new agency to spearhead New Zealand’s biosecurity efforts.

MAF recently decided on a high-level structure for what it is provisionally calling the ‘New Biosecurity Agency’.

The structure, which will bring together personnel from the present four biosecurity agencies, is a response to concerns raised in the Biosecurity Strategy. Those concerns included unclear accountabilities, fragmentation and the lack of a consistent approach across management units.

The main question for MAF was whether it needed to reorganise its biosecurity functions significantly or simply modify its existing sector-focused structure.

It decided on the more radical option. The adopted structure is based around two crucial points of intervention – pre-clearance and post-clearance – and an emphasis on cross-system integration.

Breaking risk management functions at the point where biosecurity clearance is issued makes good sense, says the new agency head Barry O’Neil. “The range of activities leading up to the issuing of a clearance fit neatly together,” he says. “Once a biosecurity clearance has been given, risk is managed with a different set of linked interventions, including surveillance, investigation and response, and coordination of the management of harmful organisms that are already established in New Zealand.”

Barry says MAF is very mindful of the danger of creating “silos” from the split. He is adamant that biosecurity risks will be managed in an integrated manner. “All directors in the new agency will be expected to work together to facilitate this approach,” he says.

Pre-clearance directorate

The structure will see the establishment of a new pre-clearance directorate that will contain four teams – Risk Analysis, Import Standards, Border Administration and Exports. Barry O’Neil describes the Risk Analysis and Import Standards teams as the “core of the new directorate”. Based on sound risk analysis, the imports team will establish import health and other standards. Its work will go on to shape border regulations, which will be developed by the Border Administration team and enforced by the MAF Quarantine Service (which will stand outside the new biosecurity agency but now report directly to the Director General).

There was initial debate around whether the export team should have its own directorate.

“Once a biosecurity clearance has been given, risk is managed with a different set of linked interventions, including surveillance, investigation and response, and coordination of the management of harmful organisms that are already established in New Zealand.”

Barry says MAF is very mindful of the danger of creating “silos” from the split. He is adamant that biosecurity risks will be managed in an integrated manner. “All directors in the new agency will be expected to work together to facilitate this approach,” he says.

Post-clearance directorate

A second new directorate will cover post-clearance risks. It will also contain four teams – Surveillance, Incursion Investigation and Response, Pest Management and Specific Incursion Response. It will be responsible for new organism responses under the Hazardous Substances and New Organisms Act.

MAF, it should be noted, has a new role overseeing pest management as part of its new accountability for end-to-end management of the biosecurity system. This does not mean the new agency will take biosecurity to the next level

‘New Biosecurity Agency’ head Barry O’Neil sees his role as “taking biosecurity in New Zealand to the next level”.

The new agency, which is taking shape under the leadership of MAF, will be responsible for implementing the Biosecurity Strategy, released in August 2003.

Barry is one of the architects of New Zealand’s existing biosecurity system, having served as Group Director of MAF’s Biosecurity Authority since its inception in 1999.

“Right from the start we had a vision of more integrated biosecurity outcomes – like working with environmental agencies on pest control. We’ve had our successes, but there’s only been so much we can do with the existing system, which has been in need of a clearer mandate, greater integration and essential capability in critical areas.”

The new agency, equipped with a formal mandate to widen its biosecurity focus and clear accountabilities, has given us the “impetus to push forward to what we have been working towards since 1999”, says Barry.

Before heading the Biosecurity Authority, Barry served as MAF’s Chief Veterinary Officer. Prior to that, he was responsible for New Zealand’s veterinary affairs in the European Community, Eastern Europe and the Middle East under a four-year diplomatic secondment in Brussels with the Ministry of Foreign Affairs and Trade.

Barry was appointed to his new position in April. He is currently leading a project team charged with getting the new agency up and running by mid-November.
take on existing pest management responsibilities of agencies such as the Department of Conservation, or that funding for this activity will be moved to biosecurity. Rather, MAF will be involved with things like ensuring roles are clear, that pests are being managed at the appropriate level (national or regional) and that existing laws are appropriate.

CTOs and Chief Technical Advisers

MAF thought hard about whether it should continue its practice of combining the roles of senior manager, stakeholder management (domestic and international) and Chief Technical Officer (CTO). The CTO role has statutory decision-making power, ranging from determining whether an organism is unwanted, to making recommendations on the issue of import health standards, to authorising actions in relation to an incursion response.

It decided to unbundle the roles. The senior management role will primarily focus on leading and managing the business in order to deliver the required outcomes. CTOs (or deputy CTOs) will now be appointed at points in the structure where there is a need for the exercise of their statutory powers. And MAF is considering whether to establish a separate directorate for chief technical advisers or to appoint key individuals within the system to be sector advisers as part of their role. Whatever the final structure, the advisers will be sector experts and will ensure the system is addressing sector issues.

It is intended that chief advisers will have responsibility for overseeing and helping to develop multilateral trade and environment agreements and conventions related to biosecurity. And they will oversee the new agency’s science information needs and its relationships with science providers.

Business and Policy Directorate

A new policy and planning directorate will supply additional glue to bond the system together. It will provide business support services across the agency and lead the planning and prioritisation process. It will work closely with the Biosecurity Strategic Unit on strategy development and provide decision support to management units. And it is expected to play a major role helping to develop and set in place new systems and processes.

Animal Welfare, SPIG and the Labs

Animal Welfare and the Special Investigations (SPIG) directorates currently exist in MAF’s existing Biosecurity Authority. MAF’s Director-General has indicated they will be part of the new agency, as will the Reference Laboratories. The labs, among other roles, investigate and diagnose new exotic pest and disease incursions. They were formerly managed under MAF’s Operations Group.

Relationship with the BSU

The Biosecurity Strategy Unit (BSU) was established following the Biosecurity Strategy’s identification of inadequate strategic capability in the existing system. The unit will comprise a mixture of personnel seconded from the biosecurity agencies and, in addition to its strategic role, will be responsible for monitoring and evaluating the performance of the new biosecurity system.

Search on for industry biosecurity reps

The search is on for representatives from sector interests to provide independent advice to the Minister for Biosecurity on the direction and performance of New Zealand’s new biosecurity system.

The Minister accepted a Chief Executives’ Forum recommendation in late June to replace the Biosecurity Council with a new ministerial advisory committee. The council originated the idea itself in the Biosecurity Strategy.

The new committee will comprise 11 representatives from major biosecurity sector groups and an independent chair.

MAF has begun consulting with industry stakeholders to get nominations for the committee. The Minister is expected to confirm the appointments by the end of September.

The old Biosecurity Council was made up of industry representatives, chief executives from involved agencies and other stakeholders.

“The advisory committee will provide production, environmental, health, marine and other sectors with a direct and undiluted line of advice to the Minister. It will ensure stakeholders have a role in the system’s governance,” says MAF Director-General Murray Sherwin.

Karen Adair,
Acting Director, Biosecurity Strategic Unit,
phone 04 471 6710, Karen.Adair@maf.govt.nz
Molecular diagnosticians get their heads together

In June, molecular scientists from four New Zealand organisations that together cover the diagnosis of pathogens affecting plants, forests, animals and humans met to exchange ideas and information.

Originally conceived as an informal get-together, the meeting turned into a significant scientific symposium with over 50 participants. Scientists from MAF’s National Centre for Disease Investigation (NCDI) and the National Plant Pest Reference Laboratory (NPPRL) met with scientists from two Crown-owned research institutes, ESR (Institute of Environmental Science and Research Limited) and AgResearch. The meeting was also attended by several New Zealand organisations that originally envisaged the meeting.

This graph is a real time PCR result, showing the increase in fluorescence due to the increase in the number of DNA copies of Mycoplasma during each PCR cycle. Each coloured line refers to a 10-fold increase in DNA concentration allowing quantitation of the number of Mycoplasma in a sample.

The meeting provided a great networking and information sharing opportunity for the molecular researchers and diagnosticians. It also highlighted the commonality of molecular techniques used for identifying pathogens across all fields. Presentations covered the use of molecular techniques to detect and characterise bacterial and viral pathogens using sequencing, phylogenetic analysis, polymerase chain reaction, or PCR (real time and conventional) and several ‘DNA fingerprinting’ techniques.

PCR in diagnostic microbiology

The use of real-time PCR in diagnosis was discussed by several presenters, including its use in the detection of viral contaminants of shellfish (such as norovirus and hepatitis A virus), HIV viral load in human clinical samples and exotic viral pathogens of plants. At NCDI, real-time PCR methods are being established for Coxiella burnetii (the causative agent of Q fever), several pathogenic mycoplasma including the causative agent of contagious bovine pleuropneumonia, foot and mouth disease virus and classical swine fever virus.

Aspects of the real-time PCR methods are readily transferable across different technical disciplines. Attendees were able to compare notes on the challenges faced by diagnosticians who had transferred established conventional PCR techniques to a real-time format. There was also discussion on the bench-side aspects of real-time PCR such as quantitation of the number of Mycoplasma in a sample.

Molecular scientists from ESR have developed rapid molecular diagnostic assays for this zoonotic disease. (Source: Bernhard Nocht Institute.)

The core values he wants to see at the heart of the agency’s culture were identified by MAF Director-General Murray Sherwin in February. They are:

• High performance
• Collegiality
• Professionalism
• Sharing of information
• Working smarter
• Ethics and integrity.

Next steps

Barry has formed a programme office to complete the work required to establish the new biosecurity agency. The design work to finalise roles within this structure and the actual transition of staff from the current biosecurity agencies are anticipated to be completed by November.

The results, he says, will help set future priorities and initiatives for driving the culture forward. They will also serve as a baseline against which to measure future progress.
the optimal application of the different reagents available. The combination of different methodologies with varying sensitivity and specificity can, at times, provide challenges in diagnostic interpretation irrespective of the technical field. The integration of PCR with more conventional diagnostic techniques in the laboratory can be challenging, due to its high sensitivity and intrinsic differences. These include PCR's ability to detect inactivated pathogens. Scientists from NPPRL presented a detailed description of how molecular methods complement serology, in vivo inoculation and electron microscopy in the identification of plant pathogens.

Sequencing to identify disease agents

Sequencing is another method of identifying micro-organisms. Although it is slower than PCR, it provides additional, more specific information, for example when virus typing is required for epidemiological studies. Another example of the technique is that you can amplify DNA material from a gene that occurs commonly in bacteria and compare the result to DNA sequences in a publicly available database, to identify which bacteria you have.

Phil Carter from ESR discussed the advantages and limitations of sequencing as an identification method for pathogens. To date, the genomes of 160 bacteria have been fully sequenced, and partial sequences are available for many more. Problems may arise when comparing the results of DNA sequencing to older schemes of identification. Nevertheless, sequencing is likely to increase because of the specificity, low cost and portability of the information it produces.

For more information contact:

1. Joseph O’Keefe, Team Leader, Immunology and Molecular Biology, joseph.okeefe@maf.govt.nz
2. Wendy McDonald, Molecular Bacteriologist, wendy.mcdonald@maf.govt.nz

In case you were frightened to ask...

PCR

The polymerase chain reaction (PCR) generates many copies of the target DNA sequence which in turn allows a few molecules of DNA to be detected (amplification). To use this technique, the target DNA characteristic for a specific organism needs to be known. PCR can then be used to test a small sample of DNA from an unknown organism and this can be compared to the DNA from the known organism. PCR is an important tool in detecting and identifying both bacteria and viruses.

Real-time PCR

In the past, a separate system to the PCR machine was used to identify the target DNA once it had been amplified. Advances in PCR technology now allow us to detect the target DNA as it is being amplified by the PCR machine, hence the term ‘real-time PCR’. This is achieved by the excitation of various chemical dyes during PCR and simultaneous measurement of the emitted fluorescence (shine). Real-time PCR offers a number of advantages over conventional PCR including speed, sensitivity, specificity, and quantitation (amount of the unknown organism in the sample) and reduced risk of cross-contamination.

Sequencing

Sequencing is the process of determining the exact order of the chemical building blocks that make up DNA or RNA. This is done by generating sub-fragments of all possible lengths of DNA using PCR and grouping the sub-fragments according to their size and which building block they ended in. The sequence of the building blocks can then be read.

Phylogenetic analysis

Phylogenetic analysis is a method of comparing DNA sequences from different known organisms to determine how closely they are related. This involves building a mathematical tree, similar to a family tree, to model the evolutionary history of the DNA sequences.

DNA fingerprinting

DNA fingerprinting involves the identification of unique patterns made by a series of DNA fragments after separating them by size. The fragments of different size are produced by cutting DNA from an organism with enzymes. The fingerprint pattern is due to differences in where the enzyme cuts the DNA from different organisms.
Minister considering varroa board of inquiry report

After Varroa destructor (varroa) was discovered in New Zealand bee hives in 2000, MAF was given responsibility for working with affected industries to develop a sustainable long-term management plan for this bee-killing mite.

The Varroa Planning Group (VPG) was established to develop a long-term, industry-led varroa management proposal. The VPG includes organisations with an interest in varroa management (local government and the beekeeping, horticulture, arable and pastoral sectors) and is supported with administrative and analytical assistance from MAF.

In early November 2003, the VPG submitted a proposal to Hon Jim Sutton, Minister of Agriculture for a varroa National Pest Management Strategy (NPMS) under Part V of the Biosecurity Act 1993. The objective of the proposal is to maintain South Island freedom from varroa. The Minister notified the proposal in December 2003, and 56 submissions were received. Analysis of the submissions identified that there was a significant group of people affected by the implementation of the proposed strategy and who were opposed to significant elements of it.

Varroa board of inquiry

Due to this diversity of opinion in the submissions, the Minister appointed a three-person board of inquiry to look into, and report on, the varroa NPMS proposal. In late May and June, the board held hearings in Wellington, Nelson, Christchurch and Dunedin. Members of the public were able to attend as observers. In accordance with the Act, the board gave all submitters the chance to speak to their submission, and to give evidence at the public hearings. The board also invited a number of non-submitters to discuss a range of relevant technical and procedural matters.

Strategy timetable

The board is now reviewing the information it received during the hearings, along with the submissions received on the proposed strategy. Under the Act, the board is required to prepare a written report and recommendations for the Minister on the proposal and matters raised during the inquiry process. The inquiry will be completed upon the delivery of the board’s report to the Minister. The board anticipates it will have completed this task by 30 July 2004.

The Act also requires that MAF prepare a response to the board’s report for the Minister’s consideration. The Minister will then make a decision whether or not the strategy should go ahead. If he decides to proceed, the aim is for the strategy to be operational in time for surveillance in the autumn of 2005.

For a copy of the strategy and a summary of submissions:

www.maf.govt.nz/varroa

Elizabeth Paterson,
Policy Analyst, MAF Policy,
Phone 04 474 4232,
elizabeth.paterson@maf.govt.nz

Varroa movement controls to change

MAF plans to reduce South Island varroa movement controls as no varroa have been found since the investigation started in June.

MAF Varroa Programme Coordinator Paul Bolger said the movement controls around Murchison would be removed once final testing of hives had been completed in the final week of July.

“MAF is satisfied that the Murchison detection is likely to have been the result of laboratory contamination and further controls are not warranted,” he said.

The Oxford investigation will continue, with changes to movement control restrictions and further testing of 7,500 hives over the next month. Currently over 300 beekeepers are affected by movement controls in North Canterbury. With the new controls, the number of beekeepers directly affected will be fewer than 30.

Mr Bolger said that the controlled area currently covering the whole of North Canterbury was to be reduced to a 10 kilometre zone around the Oxford property on Tuesday 27 July.

Movement restrictions will remain on apiaries within this zone and any hives outside the 10 kilometre zone which are also owned by beekeepers that have hives within the controlled area.

“If there is no further evidence of varroa, the Oxford investigation will be called off by the end of August. To continue with current controls would seriously disrupt the commercial operations of beekeepers and potentially those industries that rely on bees for pollination services,” Paul Bolger said.

The varroa investigation was initiated in June after a single varroa mite was found on an Oxford apiary. The investigation was extended to include Murchison following the detection of a mite on the outside of a plastic bag containing sticky boards used in varroa surveillance from a Murchison property.

A meeting with Canterbury beekeepers was held in Christchurch on 22 July.

For information on the South Island varroa investigation:

www.maf.govt.nz/varroa

Paul Bolger,
MAF Varroa Programme Coordinator,
phone 04 474 4144,
cell 025 869 539
paul.bolger@maf.govt.nz
An application to import reindeer into New Zealand has been withdrawn once it became clear the animals would not be able to comply with the requirements in the draft risk analysis.

In early April 2004, MAF Biosecurity was advised that a film company wished to import 14 reindeer from a specific isolated, closed herd of reindeer in the United States, for the purposes of filming The Lion, Witch and the Wardrobe. The proposal was to keep the animals in strict containment while in New Zealand and to re-export them to the United States after the three-month filming period.

This posed a number of challenges to MAF. Since no import health standard existed for reindeer, a risk analysis would have to be written. However, MAF’s animal biosecurity risk analysts were fully engaged with projects that had already been prioritised. This would have meant a long delay in completing the risk analysis, but the film company wanted to begin filming in July 2004. The only alternative was to engage a consultant to carry out the task. A project team was formed, comprising MAF, NZFSA, DOC and MHO. MAF staff worked closely with the consultant and by the end of April an initial draft document was produced and subjected to internal peer review.

The risk analysis addressed:

- all OIE List A diseases except those that affect only birds, horses and pigs
- all OIE List B diseases affecting multiple animal species or bovines
- all organisms reported as infecting reindeer and likely to cause disease.

The potential hazards identified and subjected to risk analysis were bluetongue, epizootic haemorrhagic disease of deer, Q fever, rabies, hemorrhagic septicemia, leptospirosis, anthrax, brucellosis, tuberculosis, Anaplasma spp., Babesia spp., echinococcosis, cysticeriosis, chronic wasting disease of deer, Theileria spp., Sarcocystis spp., Parelaphostrongylus spp., Onchocerca spp., Cryptosporidium spp. and ticks. Sanitary measures were proposed to manage the risks associated with Q fever, leptospirosis and ticks.

Specific issues of interest identified in the course of the risk analysis included the absence of evidence that reindeer are infected with Mycobacterium bovis, the low specificity (80%) of conventional anti-mortem tests for tuberculosis and the unique role of reindeer as hosts for Brucella suis biotype 4 with absence of sound evidence of infection with other Brucella spp. This latter feature illustrated the difficulties of using serological surveys of populations without a sound basis for interpreting the results.

Unfortunately, at the end of May, the reindeer in their herd of origin tested positive to Q fever, which meant that the animals could not be imported to New Zealand. The film makers will have to find other ways of creating the White Witch’s sleigh team.

Biosecurity People

National Animal Welfare Advisory Committee

The Minister of Agriculture has announced the appointment of Professor Bruce Ross to the National Animal Welfare Advisory Committee. Professor Ross will bring expertise in agricultural economics to the committee.

Professor Ross is a former Vice Chancellor of Lincoln University. Before that he headed the Trade Analysis Division of the Agricultural Directorate of the Organisation for Economic Co-operation and Development (OECD) and from 1998 to 2001 he chaired the OECD’s Agricultural Committee. From 1996 until his retirement in 2001, Professor Ross was the Director-General of Agriculture, later Agriculture and Forestry.

Professor Ross replaces Professor Neville Gregory, who resigned earlier in the year to take up a position in the United Kingdom.

Howard Pharo, National Manager, Risk Analysis, phone 04 474 4137, pharoh@maf.govt.nz

Biosecurity Issue 53 • 1 August 2004
Recommendations from the Permanent Animal Welfare Working Group were presented to the 80th General Session of the Office International des Épizooties (OIE) held in Paris from 23 to 28 May 2004.

These recommendations were endorsed by delegates from all 166 OIE member countries and were specifically supported, in the discussion session, by delegates from Sweden, Togo, Ireland, the United Kingdom and South Africa.

Guiding principles agreed

In addition to the formal adoption of Resolution XXVI, the Animal Health Code Commission reached agreement on the following guiding principles for animal welfare:

1. That there is a critical relationship between animal health and animal welfare.
2. That the internationally recognised ‘five freedoms’ (freedom from hunger, thirst and malnutrition; freedom from fear and distress; freedom from physical and thermal discomfort; freedom from pain, injury and disease; and freedom to express normal patterns of behaviour) provide valuable guidance in animal welfare.
3. That the internationally recognised ‘three Rs’ (reduction in numbers of animals, refinement of experimental methods and replacement of animals with non-animal techniques) provide valuable guidance for the use of animals in science.
4. That the scientific assessment of animal welfare involves diverse elements which need to be considered together, and that selecting and weighing these elements often involves value-based assumptions which should be made as explicit as possible.
5. That the use of animals in agriculture and science, and for companionship, recreation and entertainment, makes a major contribution to the wellbeing of people.
6. That the use of animals carries with it an ethical responsibility to ensure the welfare of such animals to the greatest extent practicable.
7. That improvements in farm animal welfare can often improve productivity and food safety, and hence lead to economic benefits.
8. That equivalent outcomes (performance criteria), rather than identical systems (design criteria), be the basis for comparison of animal welfare standards and guidelines.

Scientific underpinning for guidelines

The Animal Health Code Commission also agreed on the following scientific basis for guidelines:

1. Welfare is a broad term which includes the many elements that contribute to an animal’s quality of life, including those referred to in the ‘five freedoms’ listed above.
2. The scientific assessment of animal welfare has progressed rapidly in recent years and forms the basis of these guidelines.
3. Some measures of animal welfare involve assessing the degree of impaired functioning associated with injury, disease, and malnutrition. Other measures provide information on animals’ needs and affective states such as hunger, pain and fear, often by measuring the strength of animals’ preferences, motivations and aversions. Others assess the physiological, behavioural and immunological changes or effects that animals show in response to various challenges.
4. Such measures can lead to criteria and indicators that help to evaluate how different methods of managing animals influence their welfare.

It is anticipated that specific standards regarding land transport, sea transport, killing for disease control purposes and commercial slaughter (including religious slaughter) will be considered at the 2005 General Session meeting.

The active involvement of all OIE member countries will continue to be essential to the success of this strategic initiative, with veterinary services being actively involved in the preparation, review and implementation of animal welfare regulations and legislation in their countries.

All OIE member countries will also play an active role in their regions, along with institutions and non-governmental organisations, in promoting the initiative.

David Bayvel, Director Animal Welfare, phone 04 474 4251, fax 04 498 9888, david.bayvel@maf.govt.nz
National Animal Ethics Advisory Committee annual report released

Eleven reviews of organisations involved in the use of animals for research, testing or teaching were completed during 2003, according to the 2003 Annual Report of the National Animal Ethics Advisory Committee (NAEAC) released last month.

Chairperson Wyn Hoadley says the reviews provide assurance that all research, testing, or teaching using animals adheres to principles outlined under the Animal Welfare Act 1999.

“All the reviewed organisations showed a high commitment to the welfare of the animals in their care, and their codes of ethical conduct were renewed,” she says.

During 2003, the committee recommended an amendment to the Animal Welfare Act which essentially sought to refine what constitutes a ‘manipulation’ under the Act.

Generally, ‘manipulation’ means the interference to an animal’s normal physiological, behavioural or anatomical integrity. The committee recommended that the humane killing of animals involved in research, testing and teaching should be defined as a manipulation and be included in statistical information.

“Currently there is no distinction between the humane killing of research animals from the killing of animals for food or because they are unwanted. NAEAC is of the view that these figures should require ethical approval and be included in statistics. To do otherwise could be regarded as misleading,” Mrs Hoadley says.

In response to this recommendation, MAF is undertaking a detailed policy analysis of the proposal.

For a downloadable copy of the annual report:
www.maf.govt.nz/biosecurity/naeac-ar-03.pdf

For hard copies:
Pam Edwards, Executive Coordinator Animal Welfare, phone 04 474 4129, fax 04 498 9888, animalwelfare@maf.govt.nz

For more information:
Joanna Tuckwell, Secretary, NAEAC, phone 04 474 4296, fax 04 498 9888, naeac@maf.govt.nz

Combined NAWAC and NAEAC meeting

The National Animal Welfare Advisory Committee (NAWAC) and the National Animal Ethics Advisory Committee (NAEAC), ministerial advisory committees established under the Animal Welfare Act 1999 and supported by the Biosecurity Authority’s Animal Welfare group, held a combined meeting in June to share information and perspectives on topical animal welfare and ethics issues.

Speakers from a range of organisations gave updates about current issues and projects in the animal welfare/ethics field:

- **Graham Robertson**, member of Toi te Taiao: the Bioethics Council, and Barbara Nicholls, of the Council’s secretariat, spoke about the conclusion of the Council’s major project this past year, facilitating national dialogue about the insertion of human genes into other organisms. The Council’s next project, on xenotransplantation, is already underway. Further information is available from, and submissions may be made on, the Council’s website: www.bioethics.org.nz

- **Sue Jackson**, recently appointed as chair of the Australian and New Zealand Council for the Care of Animals in Research and Teaching (ANZCART), on the retirement of John Martin, and Jill Sutherland, from the Royal Society of New Zealand, updated committee members about ANZCART’s current direction and activities. This included ANZCART Australia’s annual conference Animal Ethics: New Frontiers; New Opportunities, to be held in Sydney in September 2004.

- **Peter Sankoff**, law lecturer at the University of Auckland and co-chair of the Animal Rights Legal Advocacy Network (ARLAN), which co-hosted New Zealand’s first animal welfare law conference in March this year, spoke about ARLAN’s educational and political goals for advancing animal welfare.

- **Jennie Moran**, from the New Zealand Food Safety Authority (NZFSA), discussed the registration of products under the Agricultural Compounds and Veterinary Medicines Act 1997, with particular reference to the Prescription Animal Remedies Standard currently being developed by the NZFSA under that Act.

Other presentations covered:

- a new teaching kit for schools, developed by the Royal New Zealand Society for the Prevention of Cruelty to Animals;

- the development of a new code of ethical conduct for the use of animals in teaching in schools; and

- initiatives by the Ministry of Fisheries and the tuna longline fishing industry to outlaw live shark finning.

NAWAC is making strong progress towards completing the revision of the deemed codes of welfare. Two codes are currently with the Minister of Agriculture for consideration, and the final two, plus one additional code, are likely to be recommended this year.

NAEAC has been pleased with the outcome of reviews of animal ethics code holders and committees by independent reviewers accredited under the Act. The committee is also working towards presenting the ‘Three Rs Award’ again later this year. This is a national award, recognising an individual or institution that has made a major contribution to the practice of humane animal-based science and to implementing the principles of the Three Rs (replacing, reducing and refining the use of animals in research, testing and teaching). Associate Professor Alex Davies of the Institute of Veterinary, Animal and Biomedical Sciences at Massey University was awarded the prize in 2003 (see Biosecurity 47:4).

Joanna Tuckwell, Policy Adviser Animal Welfare, phone 04 474 4296, fax 04 498 9888, joanna.tuckwell@maf.govt.nz
Gum leaf skeletoniser: long-term management programme producing results

The programme to provide tools for the management of the Australian insect pest gum leaf skeletoniser (*Uraba lugens*) is producing positive results.

The gum leaf skeletoniser management programme was established by MAF to combat the effect that this defoliating insect would have on host species in New Zealand (see Biosecurity 47, 1 November 2003). Forest Research and HortResearch as lead contractors have made good progress in their quest to find out more about the pest, resulting in useful information for future actions. One of the research projects is being led by Dr Darren Kriticos, Forest Research, and involves population dynamics modelling, part of which is aimed at determining the potential distribution of the gum leaf skeletoniser in New Zealand (Biosecurity 52:15). Interim results highlight that the pest has the potential to extend throughout most of the North Island, and in the South Island over much of the Canterbury Plains, Marlborough as well as portions of Southland, Otago Nelson and Tasman. Some uncertainty exists as to the effect of excessive rainfall and prolonged water logging of gum leaf skeletoniser and further work is required in this and other areas.

Forest Research will be continuing its research into the population dynamics through to June 2005. At the conclusion of this research, findings will be summarised in a way that allows forest managers to decide when and where to apply different control tactics for the pest.

The synthetic pheromone for the gum leaf skeletoniser developed by Dr Max Suckling and his team at HortResearch, is proving very useful in tracking the spread of the pest in Auckland, as well as providing data to feed into several projects such as phenology modelling (the relationship between insect’s life cycle and environmental conditions) and population sampling. Dispersion studies carried out in 2003/04 show that the area of highest density continued to be southwest of Auckland, with some expansion of the pest distribution in the margins. As yet, activity has not been found outside the Auckland region. (An infestation of gum leaf skeletoniser found in Mt. Maunganui in the 1990s appears to have been eliminated.)

Other projects currently on the go include introduction of biological control agents from Australia, assessing the impact on host species and investigation into enhanced spray formulations for chemical control.

Programme work will continue into the 2004/05 financial year and as projects are signed off the resulting information will be transferred through a variety of methods to forest owners, councils and other interested stakeholders. To assist in this process and to integrate long-term management of this programme, MAF has established a stakeholder advisory group.

In the long term, it is hoped that any impact that the gum leaf skeletoniser will have in New Zealand will be lessened through the production of a range of cost effective biological and chemical management tools.

Mark Ross, National Adviser, Pest Surveillance and Response, Forest Biosecurity, phone 04 498 9611, fax 04 498 9888, mark.ross@maf.govt.nz

European Union enlargement necessitates update of import health standards

On 1 May 2004, the European Union welcomed 10 new members: Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia and Slovenia. The accession of these states to the EU has implications for New Zealand’s import health standards as they apply to EU countries.

The EU/NZ Veterinary Agreement covers sanitary measures applicable to trade in live animals and animal products. Among other things, this agreement recognises the equivalence of the food safety and biosecurity laws of either party.

Industries producing commodities under the full equivalence arrangements benefit from simplified trading conditions, reduced compliance costs and more commercial certainty. All EU products eligible for export to New Zealand under the EU/NZ Veterinary Agreement must be certified as compliant with EU law, and must be fully eligible for unrestricted intra-community trade throughout the EU.

Prior to the accession of the new member states, MAF completed a formal review of the accession process, which included inspection visits to new member states by MAF.
Our marine environment is of significant value for New Zealand. Economically, New Zealand fisheries and aquaculture industries represent a large portion of GDP, and this country produces more than one percent of the world’s total fisheries catch.

Environmentally, New Zealand represents a hotspot for biodiversity. New Zealand’s 120-million-year geographic isolation from other landmasses has resulted in a diverse range of species endemic to New Zealand (for example in 30 percent of algae to over 95 percent of sponges found).

New Zealanders, particularly Māori, also have a strong sense of connection with the marine environment. The value of the marine environment to Māori is holistic, based on spiritual and traditional aspects of Māori culture. Although putting a dollar value on recreational and social use of the marine environment is difficult, tourism comprises about 9 percent of GDP and is increasing annually.

World-class biosecurity system

As a discipline, marine biosecurity is in its infancy. However, New Zealand’s biosecurity system is acclaimed as world class. At a recent Asia-Pacific Economic Cooperation (APEC) meeting, the marine component was identified as an example for other nations.

In 1997, marine biosecurity functions were transferred from the Ministry of Agriculture and Forestry to the Ministry of Fisheries. Subsequently, in 1999, as part of the Government’s Biodiversity Package, the development of a comprehensive marine biosecurity programme started. There was an urgent need to manage one key threat (ballast water), and simultaneously identify the needs and appropriate resources for establishing an appropriate scale of biosecurity delivery. This included developing a baseline understanding of the current extent of introductions in New Zealand’s international ports (see Biosecurity 39:17).

Enhanced capability for marine biosecurity

Marine biosecurity was recognised in the Biosecurity Strategy as one key component for enhanced capability in the current biosecurity system, with three expectations explicitly relating to marine capability. Two specific enhancements will occur to achieve this:

• Firstly, in this year’s budget, marine biosecurity capability enhancement was identified as a high priority, and received additional funding of $3.9 million per annum. The focus of this new money will largely be on pre-clearance activities, including:
 - Enhanced risk assessment capabilities across species and vectors;
 - Further ballast water compliance through development of verification tools;
 - Expanded baseline survey, re-survey and targeted surveillance activities;
 - Database development to enhance our current management of marine data and develop compatibility with international management and research organisations.

• Secondly, as part of the Biosecurity Strategy implementation, marine biosecurity functions and accountabilities will be transferred back to the Ministry of Agriculture and Forestry from the Ministry of Fisheries, pending ministerial approval. This change will have little impact on the operational capacity of the marine biosecurity system, and the synergies between the currently sector-based biosecurity functions will enhance the delivery of biosecurity outcomes in the marine environment.

For Biosecurity Strategy:

www.maf.govt.nz/biosecurity-strategy

Chad L. Hewitt, Chief Technical Officer (Marine Biosecurity), Ministry of Fisheries, phone 04 494 8201, fax 04 494 8208, chad.hewitt@fish.govt.nz

Allan Bauckham, Acting Manager (Marine Biosecurity), Ministry of Fisheries, phone 04 494 8212, fax 04 494 8208, allan.bauckham@fish.govt.nz
Dutch elm disease: 2003/04 season completed

The 2003/2004 Dutch elm disease (DED) eradication season concluded in May 2004. From November 2003, three disease detection surveys and a number of additional and special surveys were carried out.

The vector beetle trapping programme started with 102 traps and was extended to more than 200 traps in the second half of the season. Increased efforts from MAF were supported by stakeholders, especially from Manukau City Council, carrying out host-removals in Murvale Reserve and Elm Park.

During the season, 14 trees on 11 locations were found to be infested with Ophiostoma novo-ulmi (DED fungus). Infected trees were found in Waitakere, Manukau and Auckland City. Out of 8,677 Scolytus multistriatus beetles that were trapped, 29 beetles (0.33%) on 13 traps were contaminated with DED fungus. Traps with diseased beetles were located in North Shore, Manukau and Auckland City. Many elm trees were deleted as well as added on Auckland’s elm database resulting in a net reduction of 98 records.

A review of the programme in 2002 by two internationally recognised scientists concluded that eradication was still possible if the programme was strengthened. While eradication would be a desirable outcome, this season’s results confirm that the current programme is unlikely to result in eradication.

In order to evaluate the appropriate course of action, a new economic impact assessment has been completed and several options for a future programme have been explored through a feasibility study. The results of the impact assessment, feasibility study and outcomes from a consultation process on feasibility of DED eradication in Auckland will assist in determining MAF’s future response to the disease.

Ivan Veljkovic, Technical Adviser, Forest Pest Surveillance and Response, MAF Forest Biosecurity Authority, phone 04 470 2744, ivan.veljkovic@maf.govt.nz

National surveillance programme for aquatic invasive pests

Beneath the surface, aquatic weeds and pests can flourish unnoticed as silent invaders, until their existence interferes with our own enjoyment of the water. Water quality, indigenous biodiversity and consequently, cultural, economic and recreational values can be seriously impaired.

Once an aquatic weed or pest has established, it is notoriously difficult to eradicate. This makes early detection critical to safeguarding the vitality of our lakes. The National Institute of Water and Atmospheric Research (NIWA) is developing a national approach to surveillance and monitoring biosecurity risks in freshwater ecosystems.

The programme, to be funded by regional councils, Department of Conservation and the Foundation for Research, Science and Technology, is to be initially developed in five regions: Northland, Auckland, Bay of Plenty, Canterbury and Westland.

At the same time, the Northland Regional Council has initiated the development of a ‘Regional Lakes Strategy’. This is in response to a recent NIWA survey of aquatic vegetation in selected Northland lakes. The survey found that many lakes still had totally indigenous submerged vegetation, possibly the largest concentration of such lakes in New Zealand.

Initially this ambitious project will assess biosecurity threats, biodiversity values and water quality of over 400 Northland lakes. NIWA has been contracted to begin lake surveys this year.

Once baseline information has been captured, targeted monitoring/surveillance can begin and risk models developed to direct the programme to prevent the spread of invasive pests, rapidly capture new incursions and detect changes in water quality and biodiversity.

The Northland Regional Council will then start using this information as a base to direct policy to help protect significant lakes.

The Northland Regional Council and NIWA will develop the biosecurity threats surveillance project on behalf of the regional council’s Biosecurity Managers’ Group. It is anticipated that a national approach to freshwater invasive species surveillance will be operative by 2007.

It is hoped that this process can eventually be expanded to focus on wetland systems.

Matthew Hall, Northland Regional Council, phone 09 438 4639, matthewh@nrc.govt.nz

Biosecurity Issue 53 • 1 August 2004
A recent trip to Samoa and Fiji was a positive learning experience for Carolyn Kildare of Protect New Zealand and Brendan McDonald of MAF Border Management.

Carolyn and Brendan travelled to the Pacific to investigate biosecurity awareness in the Pacific, under the Ministry of Foreign Affairs and Trade’s Pacific Security Fund.

Biosecurity is a major issue in the Pacific, as island nations are vulnerable to pests and diseases arriving with travellers and cargo. Pacific biosecurity can be enhanced through improving biosecurity awareness, particularly for the Polynesian cultures that often value gifts of food transported between Island nations and to New Zealand.

In Samoa, Carolyn and Brendan met with John Burton, project leader for the Samoa Quarantine Improvement Project (SQIP) which is funded by AUSAid. Prior to taking up his role with SQIP, John worked for MAF Quarantine Service in a number of roles, based in Christchurch. John works closely with the head of the Samoa Quarantine Service, Mr Kirifi Pouono.

Quarantine is a high priority for Samoa, which has had to battle several major incursions including the taro beetle, taro leaf blight, and giant African snails. The stated goal for Samoa Quarantine is “to keep the risk offshore”. To achieve that goal, Samoa Quarantine has instituted strict quarantine requirements for travellers entering Samoa, including inspections, permits and certification.

The SQIP public awareness programme has been successful in raising awareness about the new quarantine restrictions. SQIP has used a variety of media, including radio, television, newspapers, magazines, and posters to promote the quarantine message. Another successful component of the programme has been to have Quarantine field officers visiting Samoan villages and briefing the village leaders on quarantine requirements. The village leaders advise villagers travelling to and from Samoa on quarantine requirements, so that the appropriate certificates can be obtained in advance or prohibited goods left behind.

Samoa provides a good model for developing biosecurity awareness in Polynesian countries. The SQIP programme combines infrastructure and policy development with its communications programmes and has strong public support.

Carolyn’s next stop was Suva, Fiji, to visit Fiji Quarantine.

Fiji’s biosecurity issues are different than those of Samoa. As a popular holiday destination, Fiji has many visitors from Australia, New Zealand, and North America. It is a challenge to ensure that these visitors do not bring pests and diseases into Fiji.

Fiji has strict quarantine policies, and uses declaration cards and random baggage searches to seize prohibited goods. Four X-ray machines provided by NZ Aid will be installed in the airports and post offices to improve Fiji’s detection rate of prohibited goods in luggage and mail.

Fiji Quarantine also helps exporters to comply with New Zealand’s quarantine regulations through issuing phytocertificates to exporters. Quarantine Officers Vika Raiwalui and Taitusi Naiduki took Carolyn to meet several exporters of fresh produce including taro and flowers.

The Pacific’s communications issues for biosecurity are different than New Zealand’s. New Zealand is able to use fines to enforce its quarantine requirements but this option is not available to many Pacific Island countries. As a result, travellers must be persuaded to obey quarantine requirements voluntarily.

It is to New Zealand’s advantage to improve biosecurity in the Pacific. Not only are Pacific countries closely linked to New Zealand through economic, defence and cultural ties, but the Pacific is on New Zealand’s doorstep for a biosecurity incursion. By helping to protect the Pacific, we can help to protect New Zealand.

www.protectnz.org.nz

Passifika Airport
New Zealand

Protect New Zealand promotional signage for Pacific island people travelling to and from New Zealand.
Serious citrus disease found in Australia

During early July a serious exotic citrus disease (citrus canker) was found in Australia. The disease has the potential to cause significant losses to the citrus industry. This is an excellent example of why New Zealand has strict crop import requirements in place to protect our domestic industries.

Citrus canker is a serious bacterial disease that affects citrus species, including commercial crops such as oranges, grapefruit, tangerines, lemons and limes. The bacterium, Xanthomonas axonopodis pv. citri, causes defoliation, premature fruit drop, severely blemished fruit, dieback and general tree decline. Diseased fruit cannot be sold. Citrus canker is highly contagious and is spread by wind-driven rain and over longer distances by agricultural equipment and infected planting material.

Citrus canker has been identified on a 1,200 hectare property in Queensland, Australia. The disease appears to be limited to this property and authorities are now trying to eradicate it.

Infected oranges from the farm will be destroyed immediately and further surveys undertaken to determine the extent of the incursion. Surrounding areas have been gazetted to restrict the movement of citrus products and material. It is not known how the disease has been introduced. However, in mid-2001, there were investigations into allegations of illegally imported plant material on the property in question. The investigation found insufficient evidence to support a prosecution. Australia has also reported that citrus canker has never been detected in post-entry quarantine, even though all imported citrus nursery stock must be tested for the disease.

New Zealand has strict import requirements to prevent the introduction of diseases such as citrus canker. Unless sourced from high-health accredited sources, nursery stock of all high value crops must undergo Level 3 post-entry quarantine on arrival and must be tested for important pests.

There are specific measures in place to prevent the entry of citrus canker. Susceptible nursery stock (Citrus, Fortunella and Poncirus) must be sourced from a country free from the disease or it must be tested.

There has been criticism that the stringency of MAF’s current phytosanitary system, in particular testing and quarantine requirements, is excessive and costly. However, the current situation in Australia demonstrates the importance of these requirements. MAF will maintain its measures for citrus canker and will continue to strive to ensure that it has effective measures in place to prevent the importation of all such pests. MAF will also make every effort to ensure that these measures are not subverted by illegal activities such as smuggling.

Further information:

Gerard Clover, National Adviser, Nursery Stock, Plants Biosecurity, ph 04 470 2743, fax 04 474 4257, gerard.clover@maf.govt.nz

For New Zealand’s nursery stock import requirements:

For MAF’s nursery stock import health standard 155.02.06:

Australian citrus canker information:
www.affa.gov.au/content/output.cfm?ObjectID=C2339E19-90DD-4166-BEEBBA818713C0&contType=
outputs

WTO Committee to review SPS Agreement

The World Trade Organization’s Sanitary and Phytosanitary Measures (known as the SPS Agreement) help governments ensure consumers are being supplied with food that is safe to eat, while ensuring that health and safety regulations are not being used to protect domestic producers.

In New Zealand, the SPS Agreement complements our domestic legislation. It embodies and promotes use of the science-based risk assessment that we have adopted in managing the risks associated with the international movement of goods and people.

The SPS Committee is the formal WTO body established by the SPS Agreement to provide a regular forum for consultations. It meets about three times a year. The SPS Agreement was first reviewed in March 1999 (available at http://docsinline.wto.org, click on simple search and enter G/SPS/12 in the document symbol field). Planning for another review has started.

Initially the review will be conducted through open-ended informal meetings of the SPS Committee after regular Committee meetings. Members will be invited to identify issues for discussion as part of the review. On the basis of the issues identified, the Committee Chairperson will propose which issues will be considered at each informal meeting of the Committee. The Committee is aiming to complete its review by June 2005 in time for the Fifth Session of the WTO Ministerial Conference.

New Zealand biosecurity stakeholders are welcome to submit their views, no later than 1 October 2004, to MAF (attn: Keawe Woodmore) on their experiences with regard to the operation and implementation of the SPS Agreement.

The next meeting of the Committee is scheduled for 27-28 October in Geneva.

For more information on the work of the SPS Committee:
www.wto.org/english/tratop_e/spse_e/sps_e.htm

Keawe Woodmore, Acting Manager, Biosecurity Coordination – International Team, phone 04 474 451, fax 04 470 2730, keawe.woodmore@maf.govt.nz
Potato wart (Synchytrium endobioticum) and a ‘pretend’ virus affecting ornamental plants and onions were the focus of two successful incursion response simulation exercises run by MAF Plants Biosecurity and AgriQuality recently.

The three-day potato wart simulation was held in Christchurch in early May and involved representatives from the potato growing industry, Environment Southland, Crop and Food Research together with staff from AgriQuality and MAF. The MAF contingent included National Plant Pest Reference Laboratory scientists and incursion investigators together with Plants Biosecurity representatives.

Potato wart is a notifiable organism in New Zealand. This disease has been detected in the past in a small number of urban residential gardens in Southland. These occurrences were eradicated by MAF by fumigation.

Persistent fungus
Potato wart occurs in cool moist temperate climates. Spores of the fungus can remain viable in soil for more than 20 years. The exercise simulated the detection of a potato wart incursion in a commercial potato field, an event that has never occurred in New Zealand. It started with presentations on potato wart, the practicalities of potato growing and the structure of the potato industry in the morning, and was followed by field visits to a commercial property and pack house which provided an additional field perspective. This was then followed by desk-based analysis of the technical and logistical actions that would be needed to manage such an incursion.

Industry workshop
In parallel with the simulation, MAF Plants Biosecurity hosted a workshop with the industry to discuss:

- improvements that might be made to existing arrangements for surveillance for the disease
- possible research inputs that would be useful for developing an enhanced management contingency for this disease; and
- any additional contingency planning inputs that might be required.

“The exercise was an excellent opportunity for MAF to work with the potato industry, raise their awareness of existing arrangements in MAF for exotic pest incursion management, and to discuss possibilities for joint initiatives,” says Dr Barney Stephenson, who has been discussing the possibilities of an industry-initiated programme with the New Zealand Vegetable and Potato Growers Federation.

The ornamental disease exercise was held in Auckland from 31 May to 2 June, and simulated the detection of an imaginary ‘super-virus’, aptly named Nasty unwanted plant virus (NUPV). This simulated disease combined epidemiological characteristics of the recently detected Impatiens necrotic spot virus (INSV) with a virus affecting Allium (onion) species. To add urgency to the exercise, its virulence and potential to cause damage was increased in the disease scenario.

INSV is considered to be more often an indoor disease due to the distribution of its Western flower thrips vector, which is mostly restricted to glasshouses and sheltered environments. The NUPV scenario included multiple species of thrips vectors and increased the host range of INSV to include outdoor onion crops.

This simulation exercise included a field trip to a commercial nursery operation at Auckland and explored the intricacies of tracing the source and distribution of the disease, surveillance for the thrips vector, movement controls, organism management and liaison with multiple horticultural industries.

Unknowns make exercise a challenging one

“The simulation was challenging because the total size and structure of New Zealand’s nursery industry is not fully known,” Barney Stephenson says. “Parts of the industry now operate nationally through sophisticated transport networks. This makes tracing potentially very challenging, because of possible speed and diversity of movements, possible difficulty with locating some operators, and likely impossibility of tracking down plants once they have been sold through retail outlets.

“Ability to eradicate diseases such as this would depend entirely on how early it was detected. Development of a close working relationship with the nursery and vegetable industries is crucial to successful management of this type of incursion.”

Barney Stephenson, National Adviser, Plant Pest Surveillance and Response, MAF Plants Biosecurity, phone 04 474 4102, fax 04 474 4257, Barney.Stephenson@maf.govt.nz
MAF Plants Biosecurity has undertaken several audits of offshore facilities for the treatment of fresh produce during 2004. Offshore treatment is used when high-impact pests such as fruit flies are associated with fresh produce. The use of an offshore treatment allows the risks associated with the high impact pest(s) to be effectively managed before the commodity arrives in New Zealand.

A widely used type of treatment is heat, which can be applied via a hot water dip, high temperature forced air (HTFA) or vapour heat treatment (VHT). Accreditation of the facilities for these heat treatments is based on the MAF Biosecurity Authority Standard Specification for Fruit Fly Heat Treatment Monitoring. This standard sets out the requirements for approval of facilities, the treatment units, monitoring and supervision of treatments, and documentation. Formal observational audits are conducted by MAF as part of the accreditation process and again in future years or as required.

The exporting country is required to provide MAF with detailed operational procedures covering pre-treatment (e.g. selection of probe fruit, inspection), treatment (e.g. operation of the heat treatment unit, monitoring) and post-treatment (e.g. inspection, security against re-infestation, certification). These procedures cover activities to be undertaken by both the operator of the facility (government and/or private) and the quarantine agency. In addition to providing the proposed procedures to MAF during the initial accreditation process, the exporting country is also required to consult with MAF on any modifications to these procedures that are wanted in the future.

Several countries have been exporting fruit to New Zealand from accredited heat treatment facilities for many years, and this number is now expanding. Samoa has recently begun exporting papaya from a HTFA facility and accreditation of heat treatment facilities in Vanuatu (HTFA) and Taiwan (VHT) is nearly complete. The Cook Islands has been exporting papaya to New Zealand for the last 10 years and the facility was audited in June. This audit also involved consultation between MAF and the Cook Islands on revised operational procedures that are being developed. Other facilities undergoing audit during 2004 are Tonga, New Caledonia and Fiji.

Bronwyn Wiseman, National Adviser, Fresh Produce (Pacific Island Countries), MAF Plants Biosecurity, phone 04 498 9811, bronwyn.wiseman@maf.govt.nz

Update

New and amended import health standards

Special import conditions for film production

Special one-off import conditions have been established for the temporary importation into quarantine of dog-wolf hybrids (*Canis familiaris-Canis lupus*) following approval from the Environmental Risk Management Authority. The hybrids will be held in a transitional and containment facility before re-export to the United States after filming.

Horses and horse semen from the United States

The requirement for testing for contagious equine metritis (CEM, *Taylorella equigenitalis*) is no longer required for horses that have been resident in the United States since birth. The testing for *Taylorella asinigenitalis*, a closely related organism present in the United States, has been added. The new standards are dated 16 June 2004 and replace those dated 11 August 2003.

Specified animal products and biologicals

This import health standard has undergone some rationalisation:

- The word inedible has been removed from the title because the standard covers both edible and inedible products
- Leather has been moved from this standard to two standards described below

- Emu oil has been moved from this standard to one described below.

The latest version of this standard is dated 28 June 2004 and replaces the ones dated 17 June 2004 and 20 August 2003.

Leather goods from all countries

The import conditions for leather goods from the standards INEPROIC.ALL and INETROIC.ALL have been consolidated into this new standard, dated 17 June 2004.

Ornamental animal products from all countries

Reference to the standard for leather goods has been added. Coral has been added to clause 6.3 under the Eligibility section. The IHS is now dated 17 June 2004, replacing the standard dated 13 February 2003.

Emu oil from Australia

Non-commercial emu oil has been added to this standard (moved from the standard for Specified Inedible Animal Products and Biologicals). The requirement for an import permit for commercial consignments has been removed. The IHS is now dated 17 June 2004, replacing the standard dated 14 January 1998.

Fish food, fish bait, Artemia salina and Artemia franciscana from all countries

Minor editorial changes have been made to this IHS now dated 17 June 2004 and replacing the standard dated 1 November 2001.
Canine semen into New Zealand from South Africa
This is a new IHS dated 17 June 2004. Consultation was by email in April 2004.

Sweetened condensed milk for human consumption from Brazil
This is a new IHS dated 21 June 2004. Consultation was by email in March.

Chicken and turkey hatching eggs
Following consultation in Biosecurity 51:18, the avian influenza measures in the import health standards for chicken hatching eggs from Australia, Great Britain, Canada and the United States and turkey hatching eggs from Australia, Canada, Scotland, Wales and Northern Ireland have been updated. These standards are all now dated 5 July 2004.
The import health standards for chicken hatching eggs from Australia and Great Britain and turkey hatching eggs from Australia, Canada, Scotland, Wales and Northern Ireland replace the previous standards dated 5 September 2002. The standard for chicken hatching eggs from Canada and the United States replaces the one dated 12 November 2003

Turkey hatching eggs from Great Britain
This is a new import health standard dated 5 July 2004, that was notified for consultation in Biosecurity 51:18.
As part of the review of European Union-related import health standards, the following standards have been amended

Frozen horse spleens for further processing from Canada and the United States
All reference to France and Germany has been removed as horse spleens from these countries can be imported under the import health standard for deer, horse and pig by-products (derived from low risk materials) for pharmaceutical use, technical use or petfood from the European Community. The short title of this IHS has also been changed from INEHSPIC.ALL to INEHSPIC.SPE. This standard is now dated 28 June 2004, replacing that dated 3 August 1998.

Commercial consignments of dairy products for human consumption from specified countries
All reference to EU member countries has been removed as dairy products from EU member countries can be imported under the import health standard for heat-treated milk and milk products for human consumption from the European Community. The short title of the standard has also been changed from DAIEDIIC.ALL to DAIEDIIC.SPE. This standard is now dated 28 June 2004 and replaces that dated 15 October 2002.

Commercial shipments of untanned hides and skins from specified countries
Austria, Germany and Finland have been removed from the Eligibility section, as untanned hides and skins from these countries can be imported under the import health standard for cattle, goat, sheep, pig or deer hides and skins from the European Community. The short title of the standard has also been changed from HIDCOMIC.ALL to HIDCOMIC.SPE. The standard is now dated 28 June 2004, replacing the one dated 16 May 2001.

Samples of untanned cattle/sheep/goat/deer hides and skins from specified countries
All reference to EU member countries has been removed as samples of untanned hides and skins from EU member countries can be imported under the import health standard for cattle, goat, sheep, pig or deer hides and skins from the European Community. The standard is now dated 28 June 2004 and replaces that dated 25 January 2002.

Salmonids for human consumption from specified countries
EU member countries have been removed from Clause 6.1 of the Eligibility section as salmonids for human consumption from EU member countries can be imported under the import health standard for salmonids for human consumption from the European Community. The standard is now dated 28 June 2004 and replaces that dated 16 August 2000.

Kerry Mulqueen,
National Adviser, Animal Imports and Exports,
phone 04 498 9624, fax 04 4744 132,
kerry.mulqueen@maf.govt.nz
www.maf.govt.nz/animal-imports

Amended import health standards: European Union

The accession of 10 new states to the European Union on 1 May 2004 has affected import health standards for animal products from the EU (see feature article on page 12). Amendments are required to include these new member states as eligible countries from the EU. There is no change to any of the safeguards specified in these import health standards as they applied prior to 1 May.

Comment is invited on the proposed amendments to the import health standards listed below. If any information in your submission is commercially sensitive, or if you do not wish it to be released to other interested parties, please state this clearly, with relevant reasoning, for assessment in the event of an OIA request.

Please also note that submissions received by the closure date will be considered for the final issue of the import health standard. Submissions received after the closure date may be held on file for consideration when the issued standard is next reviewed.

Amended import health standards:
- Bovine embryos from the European Union
- Bovine semen from the European Union
- Heat-treated milk and milk products for human consumption from the European Union
- Heat-treated milk and milk products not for human consumption from the European Union

Amended import health standards: European Union

The accession of 10 new states to the European Union on 1 May 2004 has affected import health standards for animal products from the EU (see feature article on page 12). Amendments are required to include these new member states as eligible countries from the EU. There is no change to any of the safeguards specified in these import health standards as they applied prior to 1 May.

Comment is invited on the proposed amendments to the import health standards listed below. If any information in your submission is commercially sensitive, or if you do not wish it to be released to other interested parties, please state this clearly, with relevant reasoning, for assessment in the event of an OIA request.

Please also note that submissions received by the closure date will be considered for the final issue of the import health standard. Submissions received after the closure date may be held on file for consideration when the issued standard is next reviewed.

Amended import health standards:
- Bovine embryos from the European Union
- Bovine semen from the European Union
- Heat-treated milk and milk products for human consumption from the European Union
- Heat-treated milk and milk products not for human consumption from the European Union
• Marine fisheries products for human consumption from the European Union
• Fish-eggs-roe for human consumption from the European Union
• Commercial consignments of fresh/frozen/processed salmonids for human consumption from the European Union
• Processed (rendered) mammalian protein derived from low-risk material for further processing into petfood from the European Union
• Processed (rendered) animal protein (derived from fish and poultry) for animal feed from the European Union
• Processed petfood from the European Union
• Cattle, goat, sheep, pig or deer hides and skins from the European Union
• Horses from the European Union
• Horse semen from the European Union
• Pig blood products (derived from low risk materials) for pharmaceutical or technical use from the European Union
• Deer, horse, and pig by-products (derived from low risk materials) for pharmaceutical use, technical use or petfood from the European Union
• Inedible lard and rendered fats (derived from cattle, goats, horses, sheep and deer) from the European Union
• Mammalian game trophies from the European Union
• Bovine meat (beef) for human consumption from the European Union
• Casings for human consumption (derived from pigs) from the European Union
• Cervine (deer) meat for human consumption from the European Union
• Horse meat for human consumption from the European Union
• Pig meat for human consumption from the European Union
• Rabbit meat for human consumption from the European Union
• Sheep and goat meat for human consumption from the European Union
• Lard and rendered fats for human consumption (derived from cattle, deer, goats, pigs, sheep) from European Union
• Shelf stable petfoods containing bovine material from the European Union
• Egg powers for human consumption from the European Union
• Meat and by-product samples ex specific countries
• Specified products for human consumption containing dairy/egg/meat from all countries
• Import health standard for the importation into New Zealand of shelf-stable petfoods containing animal products
• Heat-and-eat meals ex specific countries
• Equipment used with animals from all countries.

Closing date for submissions is Friday 13 August, 2004.

Submissions should be in writing and sent to:
Jennie Brunton, International Animal Trade,
fax +64 4 474 4227, jennie.brunton@maf.govt.nz
www.maf.govt.nz/biosecurity/consultation.htm#draft-ihs

Draft import health standards for consultation

Cats and dogs on yachts
The current standard for cats and dogs on yachts from all countries has been separated into specified countries and Australia. These draft standards include updated import conditions for Australian animals, to make them consistent with those that arrive on other forms of transport, incorporate new countries that have been previously included in other cat and dog standards, and clarify details on quarantine periods and testing.

Your comments on these draft import health standards are welcome and should be received in writing by 20 August 2004.

Grant Clarke,
International Animal Trade,
grant.clarke@maf.govt.nz,
fax 04 474 4227
www.maf.govt.nz/biosecurity/consultation.htm#draft-ihs

Import health standards revoked

Irradiated bovine colostrum for feeding to livestock from Germany and Denmark
Irradiated bovine colostrum for feeding to livestock, from Germany and Denmark, can be imported under the import health standard for the importation of heat-treated milk and milk products not for human consumption from the European Community. These standards were both dated 16 May 2001.

Specified pig meat products for human consumption from Italy
Specified pig meat products for human consumption can be imported under the import health standard for the importation of pig meat for human consumption from the European Community. This IHS was dated 1 May 2002.

Rennet from Australia
Rennet can be imported under the import health standard for the importation of specified animal products and biologicals. This IHS was dated 3 August 1998.

Kerry Mulqueen,
National Adviser, Animal Imports and Exports,
phone 04 498 9624, fax 04 4744 132,
kerry.mulqueen@maf.govt.nz

Exotic Disease Response Centre’s surveillance functions
The Director Animal Biosecurity has approved a new standard that describes the support the Exotic Disease Response Centre gives MAF’s animal disease surveillance programme. The centre’s key surveillance functions are:
• Design of surveys to verify New Zealand’s freedom from exotic, unwanted organisms, or to obtain more information on endemic organisms.
Exotic environmental pest investigation and initial response

This new standard sets the minimum requirements for suppliers managing and delivering the operational aspects of MAF-led initial investigations and initial responses to incursions of exotic environmental pest species. The standard helps enable MAF to meet the requirements of the MAF Biosecurity Authority policy statement on responding to an exotic organism incursion: August 2001. Currently MAF’s National Centre for Disease Investigation and National Plant Pest Reference Laboratory are the key suppliers of this service. While there are no current plans to outsource this work to external suppliers, the standard has been written in generic terms to ensure that it will also be applicable to alternative service providers should this be deemed appropriate in the future.

Amelia Pascoe, Programme Coordinator, Exotic Animal Response, phone 04 470 2785, amelia.pascoe@maf.govt.nz

For the policy:

Codes of ethical conduct - approvals, notifications and revocations since the last issue of Biosecurity

All organisations involved in the use of live animals for research, testing or teaching are required to adhere to an approved code of ethical conduct.

Codes of ethical conduct approved: Nil

Transfers of code of ethical conduct approved: Nil

Amendments to codes of ethical conduct approved: Nil

Notifications to MAF of minor amendments to codes of ethical conduct: Nil

Notifications to MAF of arrangements to use an existing code of ethical conduct:

- Equine Fertility Services Ltd (to use AgResearch Ltd’s code and Ruakura AEC)
- ES Plastics Ltd (to use AgResearch Ltd’s code and Ruakura AEC)
- Impian Technologies Ltd (to use Animal Health Services Centre’s code and AEC)
- Photonz Corporation Ltd (to use the University of Auckland’s code and AEC)
- Protemix Corporation Ltd (to use the University of Auckland’s code and AEC)
- Robbins, Lloyd (to use Animal Health Services Centre’s code and AEC).

Codes of ethical conduct revoked or expired or arrangements terminated: Nil

Approvals by the Director-General of MAF for the use of non-human hominids: Nil

Approvals by the Minister of Agriculture of research or testing in the national interest: Nil

Linda Carsons, Senior Policy Adviser, Animal Welfare, phone 04 470 2746, fax 04 498 9888, linda.carsons@maf.govt.nz

NAWAC Annual Report available

The 2003 Annual Report of the National Animal Welfare Advisory Committee (NAWAC) was published recently.

For a downloadable copy:

www.maf.govt.nz/animal-welfare

For hard copies:

Pam Edwards, Executive Coordinator Animal Welfare, phone 04 474 4129, fax 04 498 9888, animalwelfare@maf.govt.nz

Draft import health standards for consultation - Plants Imports

Consultation on the revised draft import schedule for Secale cereale (rye) grains for consumption or processing

As part of the consultative process in the re-development of the import health standard for grains for consumption and
processing for *Secale cereale*, MAF has placed the following draft document for public consultation and comment on the MAF website:

Draft import health standard schedule for Secale cereale (rye) grains for consumption or processing

Submissions on the revised schedule for *Secale cereale* should be sent to the address below by 16 August 2004. Depending on the results of the consultation process it is anticipated that the new requirements will be approved for inclusion in PIT-GFP-PHR after this date.

This document is available on MAF’s website:

www.maf.govt.nz/biosecurity/consultation.htm#draft-ihs-plants-biosecurity

Forward your comments in writing to:

Plant Imports – Consultation on *Secale cereale* - PIT-GFP-PHR: Grain for Processing, Plant Health Requirements
MAF Biosecurity Authority – Plants Biosecurity
PO Box 2526, Wellington, New Zealand
phone +64 4 498 9843, fax +64 4 474 4257, plantimports@maf.govt.nz

Revised GM testing protocols

MAF Biosecurity has recently reviewed the GM testing protocols for seed for sowing imports of maize and sweet corn (*Zea mays*), soya beans (*Glycine max*), and oilseed rape (*Brassica napus* var. *oleifera*).

The new protocols are available MAF’s website:

The main change to the protocols are the mandatory requirement for PCR testing to be qualitative, and for testing certificates to be current (testing performed in the current year or one year previous).

MAF will allow an implementation phase for these new changes. Quantitative PCR test certificates, dated 1 January 2003 to 1 July 2004 will still be accepted, but testing done after 1 July 2004 must now be qualitative.

Testing can be arranged with one of the three MAF-accredited laboratories:

GeneScan USA in Louisiana, USA; Eurofins Scientific Analytic in Nantes, France; or AgriQuality GMO Services in Melbourne, Australia.

Import requirements for nursery stock - Dormant bulbs

As part of the consultative process in the revision of the import requirements for dormant bulbs, MAF has distributed the following document for public consultation and comment:

Import requirements for nursery stock – dormant bulbs

This document reports on MAF’s progress to review the import requirements for seven bulb genera, clarifies the current requirements for all bulbs and proposes two changes to these requirements:

1. Dormant bulbs which do not require post-entry quarantine should no longer require an import permit; and
2. The option to import dormant bulbs of 60 listed genera which do not produce truly dormant bulbs, corms or rhizomes should be removed.

It is available on MAF’s website:

www.maf.govt.nz/biosecurity/consultation.htm#draft-ihs-plants-biosecurity

Comments on these draft documents were due to MAF by close of business on 30 July 2004, but submissions will be accepted after this date. Depending on the results of consultation, it is anticipated that the new requirements will be in place by the end of August 2004. MAF encourages respondents to forward comments electronically to the email address below. However, should you wish to forward submissions in writing, please send them to the following address:

Plant Imports - Consultation on Dormant Bulbs
MAF Biosecurity Authority – Plants Biosecurity
PO Box 2526, Wellington, New Zealand
phone +64 4 498 9843, fax +64 4 474 4257, plantimports@maf.govt.nz

Entry conditions for meals of plant origin for animal feed

The Standard PIT-MEAL-IMPRIT Importation of Oil Seed Meals for Animal Feed into New Zealand has been issued to replace old standards that had not been amended for some time. Requirements are listed for the following meals from approved countries only: copra, cotton seed meal, palm kernel meal, rape/canola meal and soybean meal.

The new standard is dated 20 May 2004 and is available on MAF’s website:

Plant Imports, Plants Biosecurity, MAF Biosecurity Authority, PO Box 2526, Wellington, New Zealand
phone +64 4 498 9843, fax +64 4 474 4257, plantimports@maf.govt.nz

Public consultation on import requirements for nursery stock - Cycas, Dracaena and Yucca

As part of the consultative process in the revision of the import requirements for Cycas, Dracaena and Yucca, MAF has distributed the following document for public consultation and comment:

Import requirements for nursery stock - Cycas, Dracaena and Yucca

The document proposes restricting importation of whole plants of Cycas, Dracaena and Yucca to dormant cuttings and tissue culture.

It is available on MAF’s website:

www.maf.govt.nz/biosecurity/consultation.htm#draft-ihs-plants-biosecurity

Comments on these proposed changes should be sent
New organism records: 15/05/04 - 25/06/04

Biosecurity is about managing risks – protecting the New Zealand environment and economy from exotic pests and diseases. MAF Biosecurity Authority devotes much of its time to ensuring that new organism records come to its attention, to follow up as appropriate. The tables below list new organisms that have become established, new hosts for existing pests and extension to distribution for existing pests. The information was collated by MAF Forest Biosecurity, MAF Plants Biosecurity and MAF Animal Biosecurity during 15/05/04 – 25/06/04, and held in the Plant Pest Information Network (PPIN) database. Wherever possible, common names have been included.

PLANTS BIOSECURITY RECORDS 15/05/2004 – 25/06/2004

<table>
<thead>
<tr>
<th>Organism Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysomphalus aonidum (Florida red scale) Gnetum pendulum (No common name)</td>
<td>Auckland</td>
<td>National Plant Pest Reference Laboratory (NPPRL)</td>
<td>MAF applied containment measures to the site of detection, and then determined an association of this pest with trade in Dracaena marginata.</td>
</tr>
</tbody>
</table>

New host reports

<table>
<thead>
<tr>
<th>Organism Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoma exigua var. exigua (blight, leaf spot, stem spot) Passiflora alata (passionfruit)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This fungus has a very wide host range.</td>
</tr>
<tr>
<td>Mycosphaerella lateralis (no common name) Spiraea cantoniensis (no common name)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>There are no other hosts recorded in PPIN.</td>
</tr>
<tr>
<td>Glomerella cingulata (anthracnose, bitter rot) Passiflora ligularis (sweet granadilla)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>This fungus has a very wide host range.</td>
</tr>
<tr>
<td>Fusarium oxysporum (crown canker, crown rot) Cordyline sp. (cordyline)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>This fungus has a wide host range and geographic distribution.</td>
</tr>
<tr>
<td>Alternaria passiflorae (brown spot) Passiflora ligularis (sweet granadilla)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include black passionfruit (Passiflora edulis).</td>
</tr>
<tr>
<td>Chrysomphalus aonidum (Florida red scale) Dracaena marginata (dracaena)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include Gnetum pendulum.</td>
</tr>
<tr>
<td>- Dendrobium kingianum cv. ‘Pauline’ (orchid)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td></td>
</tr>
</tbody>
</table>

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosphaerella lateralis (no common name) Spiraea cantoniensis (no common name)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>No other distributions are recorded in PPIN.</td>
</tr>
</tbody>
</table>

ANIMALS BIOSECURITY RECORDS 15/05/2004 - 25/06/2004

Validated new to New Zealand reports: No new to New Zealand reports recorded for this period.

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ochetellus glaber (black house ant)</td>
<td>Rock wall</td>
<td>Mid Canterbury</td>
<td>National Plant Pest Reference Laboratory</td>
</tr>
</tbody>
</table>

Plants records: George Gill, Technical Adviser, Pest Management, MAF Plants Biosecurity, phone 04 470 2742, fax 04 474 4257, george.gill@maf.govt.nz

Animals records: Amelia Pascoe, Programme Coordinator, Exotic Animal response, Animal Biosecurity, ph 04 470 2785, fax 04 474 4133, amelia pascoe@maf.govt.nz
FOREST BIOSECURITY RECORDS 15/05/2004 – 25/06/2004

Validated new to New Zealand reports: No new to New Zealand records recorded for this period.

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uromycladium alpinum</td>
<td>Acacia baileyana (coastal bald cypress)</td>
<td>Hawke’s Bay</td>
<td>Forest Research</td>
<td>Other known hosts include A. dealbata, A. mearnsii, and Acacia sp.</td>
</tr>
<tr>
<td>Pseudoceremia suavis</td>
<td>Eucalyptus robusta (eucalyptus, swamp mahogany)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include Japanese plum, apple, kaharoa acacia and Eucalyptus viminalis.</td>
</tr>
<tr>
<td>Pseudococcus longispinus</td>
<td>Myrsine australis (Maple)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>This insect has a wide host range.</td>
</tr>
<tr>
<td>Ceroplastes sinensis</td>
<td>Lepidopteris paradoxa (Scaly Zamia)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>This insect has a wide host range.</td>
</tr>
<tr>
<td>Saissetia coffeae</td>
<td>Lepidopteris paradoxa (Scaly Zamia)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include kiwifruit and Queensland kauri. Also record-</td>
</tr>
<tr>
<td>Nipaecoccus auripunatus</td>
<td>Apis mellifera (kauri blatt)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>This insect has a wide host range.</td>
</tr>
<tr>
<td>Valsaria rubricosa</td>
<td>Pinus radiata (Radiata pine)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>No other PPIN hosts are recorded.</td>
</tr>
<tr>
<td>Hemiberlesia lataniae</td>
<td>Ficus pumila (climbing fig)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include kiwifruit, titoki, mandarin, sweet orange,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necoria fuckeliana</td>
<td>Pinus radiata (pine, montery pine, radiata pine)</td>
<td>South Canterbury</td>
<td>Forest Research</td>
<td>Other known distributions are Southland and Dunedin.</td>
</tr>
<tr>
<td>Mycosphaerella spissa</td>
<td>Coprosma repens (taupata)</td>
<td>Dunedin</td>
<td>Forest Research</td>
<td>No other distributions are recorded in PPIN. It has been reported from</td>
</tr>
<tr>
<td>Coleroa senniana</td>
<td>Protea sp. (protea)</td>
<td>Mid Canterbury</td>
<td>Forest Research</td>
<td>Other PPIN distributions include Auckland, Wanganui, Taranaki, Bay of</td>
</tr>
<tr>
<td>Nambouria xanthops</td>
<td>Eucalyptus tenuifolia (eucalyptus)</td>
<td>Waikato</td>
<td>Forest Research</td>
<td>Other PPIN distributions include Auckland and Coromandel.</td>
</tr>
<tr>
<td>Cladosporium altum</td>
<td>Anthothamnus sp. (flax lily)</td>
<td>Wellington</td>
<td>Forest Research</td>
<td>Other PPIN distributions include Mid Canterbury. It has also been</td>
</tr>
<tr>
<td>Ceroplastes sinensis</td>
<td>Eucalyptus ficifolia (eucalyptus, red flowering gum, scarlet flowering gum)</td>
<td>Hawke’s Bay</td>
<td>Forest Research</td>
<td>Other PPIN distributions include Auckland, Northland, Marlborough</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taranaki</td>
<td></td>
<td>Sounds, Bay of Plenty, Waikato and Gisborne.</td>
</tr>
<tr>
<td>Mycosphaerella fici</td>
<td>Ficus macrophylla (Moreton Bay fig psyllid)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>There are no other distributions are recorded in PPIN. Until now it has</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>only been reported from Auckland.</td>
</tr>
</tbody>
</table>

CODES OF WELFARE – Animal Welfare Act Update

The table below is a quick guide as to the status of the various codes of welfare as they are developed under the Animal Welfare Act 1999.

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broiler Code</td>
<td>Final code issued by Minister of Agriculture on 26 June 2003</td>
</tr>
<tr>
<td>Pig Code</td>
<td>Final code presented to Minister of Agriculture on 25 November 2003</td>
</tr>
<tr>
<td>Rodeo Code</td>
<td>Final code issued by Minister of Agriculture on 4 December 2003</td>
</tr>
<tr>
<td>Layer Hen Code</td>
<td>Final code presented to Minister of Agriculture on 19 April 2004</td>
</tr>
<tr>
<td>Zoo Code</td>
<td>Final code to be presented to Minister of Agriculture in August 2004</td>
</tr>
<tr>
<td>Circus Code</td>
<td>Final code to be presented to Minister of Agriculture in August 2004</td>
</tr>
<tr>
<td>Commercial Slaughter Code</td>
<td>Public consultation completed. Final code to be presented to Minister of Agriculture last quarter 2004</td>
</tr>
</tbody>
</table>

Exotic disease and pest emergency hotline: 0800 809 966
Animal welfare complaint hotline: 0800 327 027
www.maf.govt.nz/biosecurity