NEW ORGANISMS
Roles of ERMA New Zealand and MAF

Carcass disposal planning

Biocontrol for eucalyptus pest

New international wood packaging material standard
CONTENTS

EDITORIAL
Common biosecurity goal – complementary roles ............ 3

FRONTLINE NEWS
100 of the worst invaders: how do we rate? ................. 4
Foot and mouth disease field exercise successful .......... 6
Southern saltmarsh mosquito eradication update ........... 7
Plans to bring in a new organism? Ask ERMA NZ first .... 8
New organisms: How MAF ensures controls and standards are met .... 9

BIOSECURITY SYSTEMS
Biosecurity response capability: investing in human capital .................. 10

BIOSECURITY SCIENCE
Best laid [biocontrol] plans .................................. 11

INTERFACE
New international wood packaging material standard ........ 12
International forest quarantine meetings ..................... 14
Modelling disaster ............................................. 16
Carcass disposal workshop sets scene for agreement ..... 18
People and animals: A timeless relationship ................. 19
Animal welfare prosecutions .................................. 19
RDS meeting explores animal research issues ............... 20
Close look at Australian grain and seed facilities ........... 22

UPDATES ................................................................ 23

DIRECTORY ............................................................... 26

Cover: Applications to bring tropical butterflies like this Ulysses Butterfly, (Papilio ulysses) into New Zealand for public display are among some of the more unusual proposals dealt with by ERMA New Zealand (see article on page 8 – part of our feature about the complementary roles of MAF and ERMA New Zealand in managing new organisms).

Photo: Michael & Patricia Fo, Minden Pictures/Stock Image Group.
Our common objective is to protect New Zealand from unwanted or potentially risky new organisms.

Together, ERMA New Zealand and MAF’s Biosecurity New Zealand play an important part in overseeing New Zealand’s biosecurity defences. Our common objective is to protect New Zealand from unwanted or potentially risky new organisms. MAF has the wider responsibility in this regard because the Biosecurity Act 1993 covers all organisms that might be of concern. ERMA New Zealand’s responsibilities under the Hazardous Substances and New Organisms (HSNO) Act 1996 are confined to organisms that have not yet been released into the New Zealand environment.

The main difference between the Acts is that the HSNO Act principally covers new organisms that are deliberately imported, developed or released via the ERMA New Zealand approval process, whereas the Biosecurity Act also covers organisms (including new organisms) that are unintentionally or illegally introduced, arrive unaided or are already established in New Zealand.

In 2003, the formal relationship between the agencies was strengthened when amendments to the HSNO Act gave MAF responsibility for the enforcing of the new organism provisions of the HSNO Act. ERMA New Zealand retains oversight of this enforcement in relation to new organisms.

A Memorandum of Understanding exists between the agencies to ensure that risks associated with new organisms are adequately managed where the Biosecurity and HSNO Acts intersect, and to clarify the responsibilities of ERMA New Zealand and MAF in relation to new organism enforcement. It also confirms ERMA New Zealand’s consultation responsibilities to MAF with respect to processing new organism applications under the HSNO Act.

MAF’s enforcement role includes maintaining oversight of containment facilities containing new organisms and investigating breaches of controls imposed by ERMA New Zealand for any new organism in approval. The enforcement role also includes bringing about prosecutions under the HSNO Act. There are many examples of the regime working effectively.

In 2003, a university teacher from the Czech Republic was prosecuted under the Biosecurity Act, Trade in Endangered Species (TIES) Act and the HSNO Act section 109(1)(c) for possession of unauthorised goods, after he smuggled seven live baby chameleons into New Zealand. He was found guilty of the HSNO charge of importing a new organism and fined $7500.

In May 2003, charges were laid against an Auckland nursery under the Biosecurity Act and the HSNO Act, when it was discovered that they had a plant of the genus *Pogonatherum* (baby bamboo) for sale. As no HSNO approval for the importation of the plant had been issued, the incident represented a breach of Sections 25(1) and 109(1) of the HSNO Act.

While the current arrangements are working well, there are naturally some challenges which we are continuing to resolve. One area being worked through at the moment is that of improving the interface between the HSNO and Biosecurity Acts in dealing with both new organisms that arrive unintentionally, usually associated with other goods, as compared to those introduced in accordance with a HSNO approval. This results in some overlaps in obligations and accountabilities between MAF and ERMA.

The two agencies are working together to resolve this and other challenges and ERMA New Zealand is committed to developing and strengthening the partnership to protect the environment from unwanted organisms.

Bas Walker, Chief Executive, ERMA New Zealand

New organisms, MAF and ERMA New Zealand

In this issue of *Biosecurity* we feature new organisms and the roles of the two key agencies in managing – or preventing – their introduction to New Zealand. ERMA New Zealand Chief Executive Bas Walker, who stands down from his position on 31 June, contributes our guest editorial with an overview of the complementary roles of MAF and ERMA. On page 4, we look at invasive species, and how New Zealand shapes up on a list of the world’s worst 100 alien invaders. On pages 8 and 9 we take a more detailed look at the respective roles of MAF and ERMA New Zealand with respect to new organisms. And on page 11, freelance journalist Margaret Richardson highlights a new organism story where getting a biocontrol agent to solve the problem has been anything but plain sailing.
In the Pacific Island of Guam, the Brown tree snake, accidentally introduced after World War Two, has decimated the island’s native fruit bats and bird life. In Hawaii, locals are driven to distraction by the 90 decibel shrieking call of a Caribbean tree frog. And in the southern United States more than 600,000 hectares has been smothered by Kudzu, a Japanese plant imported in the 1800s for erosion control and stock feed.

These are just three of countless examples of what can go wrong when species invade new territory, and they feature in a major article on the subject in the March 2005 National Geographic magazine. Ever since life began, species have spread within and between landmasses – New Zealand, for example is regularly bombarded with insect and even bird life from Australia through upper atmospheric wind streams. But this traffic has multiplied exponentially since the most invasive species of all – Homo sapiens sapiens – began to get serious about colonising the world.

We have introduced invasive species both deliberately and accidentally and the effort required to repel the alien invaders at the gates is growing along with volumes of tourism and trade. As New Zealanders we could be forgiven for a touch of complacency about our relative safety from alien species. The ocean acts as a natural buffer, human settlement is relatively recent, and we've avoided introducing high-profile invaders such as snakes or large predators. So far, we have kept out the world’s worst agricultural pests and diseases.

The National Geographic article also mentions a couple of points in New Zealand’s favour – our adoption of ballast water exchange regulations for international shipping, and the use of inter-agency cooperation to eradicate pests from offshore islands.

But we shouldn’t be smug. A table listing 100 of the world’s least wanted invasive species is a sobering read. It is drawn from the Global Invasive Species Database, maintained by the World Conservation Union (IUCN).

Page 5 opposite: National Geographic’s ‘100 least wanted’ list of invasive species with status of each species in NZ noted. The list is a selection from the global invasive species database maintained by the World Conservation Union (IUCN).

Notes:
1. Organisms have been recorded in the table as established, absent or detected in New Zealand based on the particular species identified, and does not necessarily reflect the status of other similar species, for example, privet (Ligustrum robustum). Although this species is absent, three other species of privet are invasive in New Zealand forests: tree privet (Ligustrum lucidum), Chinese privet (L. sinense) and L. ovalifolium.
2. A number of the species listed in the table as established in New Zealand are subject to official control or other pest management programmes.
3. The information contained in this table is the best that was available when it was prepared in April 2005.

Suvi van Smitt, Technical Support Officer, Biosecurity New Zealand, phone 04 460 8702, suvi.vansmit@maf.govt.nz

The brushtail possum is a good example. It does exceptionally well here compared with its native Australia. On the other hand, a couple of native New Zealand species – a species of water snail and a flatworm – have become major pests when introduced overseas.

By Phil Stewart, Editor, Biosecurity

FRONTLINE NEWS
<table>
<thead>
<tr>
<th>Organism</th>
<th>Established in New Zealand</th>
<th>Detected or intercepted but not established in NZ</th>
<th>Never detected in New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Micro-organisms</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian malaria (Plasmodium relictum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana bunchy top virus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chestnut blight (Cryptocentria parasitica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crayfish plague (Aphanomyces astaci)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch elm disease (Ophiostoma ulmi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frog chytrid fungus (Batrachochytrium dendrobatidis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytophthora root rot (Phytophthora cinnamom)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinderpest virus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Aquatic plants</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caulerpa seaweed (Caulerpa taxifolia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common cordgrass (Spartina anglica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakame seaweed (Undaria pinnatifida)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water hyacinth (Eichhornia crassipes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Land plants</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African tulip tree (Spathodea campanulata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black wattle (Acacia mearnsii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazilian pepper tree (Schinus terebinthifolius)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster pine (Pinus pinaster)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cogon grass (Imperata cylindrica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erect prickly pear (Opuntia stricta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire tree (Myrica faya)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant reed (Arundo donax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gorse (Ulex europaeus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiptage (Hiptage benghalensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese knotweed (Fallopia japonica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kavlii ginger (Hedychium gardnerianum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koster’s curse (Cledenia hirta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudzu (Pueraria montana)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lantana (Lantana camara)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leafy spurge (Euphorbia esula)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucaena (Leucaena leucocephala); syn M. vindhliosa var. tibublifolia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca (Melaleuca quinquernervia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesquite (Prosopis glandulosa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miconia (Miconia calvescens)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mile-a-minute weed (Mikania micrantha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimosa (Mimosa pigra)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privet (Ligustrum robustum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpwood (Ciprosia peltata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple loosestrife (Lythrum salicaria)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinine tree (Cinchona pubescens)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoebottom ardisia (Ardisia elliptica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siames weed (Chromolaena odorata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strawberry guava (Psidium cattleyanum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamarisk (Tamarix ramosissima)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wedelia (Spathenotica trilobata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Himalayan raspberry (Rubus ellipticus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Aquatic invertebrates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese mitten crab (Eriocheir sinensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb jelly (Mnemiopsis leidyi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish hook flea (Cercopagis pengo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden apple snail (Pomacea canaliculata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green crab (Carcinus maenas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian clam (Potamocorbula amurensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean mussel (Mytilus galloprovincialis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Land invertebrates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentine ant (Linepithema humile)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian long-horned beetle (Anoplophora glabripennis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian tiger mosquito (Aedes albopictus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big-headed ant (Pheidole megacephala)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common malaria mosquito (Anopheles quadrimaculatus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common wasp (Vespula vulgaris)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crazy ant (Anoplolepis gracilipes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypress aphid (Cinara cupressi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flatworm (Platydemus manokwari)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formosan subturreaneum termite (Coptotermes formosanus shiraki)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant African snail (Achatina fulica)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsy moth (Lymantria dispar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khapra beetle (Trogoderma granarium)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little fire ant (Wasmannia aropunctata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red imported fire ant (Solenopsis invicta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosy wolf snail (Euglandina rosea)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet potato whitefly (Bemisia tabaci)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Amphibian</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bullfrog (Rana catesbeiana)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cane toad (Bufo marinus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caribbean tree frog (Eleutherodactylus coqui)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fish</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown trout (Salmo trutta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carp (Cyprinus carpio)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large mouth bass (Micropterus salmoides)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mozambique tilapia (Oreochromis mossambicus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nile perch (Lates niloticus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainbow trout (Oncorhynchus mykliss)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking catfish (Clarias batrachus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western mosquito fish (Gambusia affinis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Birds</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian mynah bird (Acridothees tristis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-vented bulbul (Pycnonotus cafer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starling (Sturnus vulgaris)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reptiles</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown tree snake (Boiga irregularis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-eared slider turtle (Trachemys scripta elegans)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mammals</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brushtail possum (Trichosurus vulpecula)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic cat (Felis catus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat (Capra hircus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray squirrel (Sciurus carolinensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macaque monkey (Macaca fascicularis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse (Mus musculus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutria (Myocastor coypus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig (Sus scrofa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red deer (Cervus elaphus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red fox (Vulpes vulpes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ship rat (Rattus rattus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Indian mongoose (Herpestes javanicus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoat (Mustela erminea)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Organism**

- Northern Pacific sea star (Asterias amurensis)
- Zebra mussel (Dreissena polymorpha)
Exercise Taurus has been a true ‘whole-of-government’ enterprise, involving not only a broad range of government departments and agencies, but also many from the private sector. ‘Whole of government’ is entirely fitting, because an exotic animal disease emergency would be very much a whole-of-nation problem.

The five-day operational stage of the exercise was completed on 18 March, providing the scenario for the National Response Centre exercise in April.

The exercise started in the third week of a simulated foot and mouth disease outbreak centred in the Manawatu region. The Exotic Disease Response Centre in Upper Hutt and a satellite headquarters situated close to the outbreak managed realistic desktop exercises and coordinated field exercises at animal product processing sites, a saleyard and on a number of farms in the region.

About 140 people took part in the simulation, under the scrutiny of 25 observers. Representation from within MAF included Biosecurity New Zealand staff from Head Office and the Investigation and Diagnostic Centre at Wallaceville, as well as staff from the New Zealand Food Safety Authority (NZFSA). AgriQuality New Zealand, Asure New Zealand and The EpiCentre, Massey University are MAF’s contracted service providers for the Exotic Disease Response Programme and provided staff for both response centres.

Many other agencies with statutory accountability or commercial interest in sectors affected by the Exotic Disease Response Programme also took part, including New Zealand Police, Transit New Zealand, Manawatu Regional Council, animal product processing industries and rural stock and station agencies. Local veterinary practitioners, veterinary students from the Institute of Veterinary and Biomedical Sciences (IVABS), Massey University and international observers from the UK, Ireland, Australia, Canada and the United States functioned as newly-recruited patrol veterinarians testing the scale-up training programmes.

Starting the simulation with the disease outbreak at an advanced stage allowed all operational groups to be challenged from the first day. Simulation ‘umpires’ kept participants on their toes with a series of realistic problems and scenarios.

This system workout gave staff a chance to exercise their roles in an authentic setting, test and identify improvements to MAF’s new Foot and Mouth Disease plan and updated response structure, and estimate resource requirements should a real live exotic disease emergency unfold.

Foot and mouth disease field exercise successful

Twenty-four years after New Zealand’s last ‘real’ large-scale exotic disease alert (at Temuka, in the South Island), Exercise Taurus has been successfully completed as the most ambitious exotic animal disease simulation New Zealand has held.

Exercise Taurus has been a true ‘whole-of-government’ enterprise, involving not only a broad range of government departments and agencies, but also many from the private sector. ‘Whole of government’ is entirely fitting, because an exotic animal disease emergency would be very much a whole-of-nation problem.

The five-day operational stage of the exercise was completed on 18 March, providing the scenario for the National Response Centre exercise in April.

The exercise started in the third week of a simulated foot and mouth disease outbreak centred in the Manawatu region. The Exotic Disease Response Centre in Upper Hutt and a satellite headquarters situated close to the outbreak managed realistic desktop exercises and coordinated field exercises at animal product processing sites, a saleyard and on a number of farms in the region.

About 140 people took part in the simulation, under the scrutiny of 25 observers. Representation from within MAF included Biosecurity New Zealand staff from Head Office and the Investigation and Diagnostic Centre at Wallaceville, as well as staff from the New Zealand Food Safety Authority (NZFSA). AgriQuality New Zealand, Asure New Zealand and The EpiCentre, Massey University are MAF’s contracted service providers for the Exotic Disease Response Programme and provided staff for both response centres.

Many other agencies with statutory accountability or commercial interest in sectors affected by the Exotic Disease Response Programme also took part, including New Zealand Police, Transit New Zealand, Manawatu Regional Council, animal product processing industries and rural stock and station agencies. Local veterinary practitioners, veterinary students from the Institute of Veterinary and Biomedical Sciences (IVABS), Massey University and international observers from the UK, Ireland, Australia, Canada and the United States functioned as newly-recruited patrol veterinarians testing the scale-up training programmes.

Starting the simulation with the disease outbreak at an advanced stage allowed all operational groups to be challenged from the first day. Simulation ‘umpires’ kept participants on their toes with a series of realistic problems and scenarios.

This system workout gave staff a chance to exercise their roles in an authentic setting, test and identify improvements to MAF’s new Foot and Mouth Disease plan and updated response structure, and estimate resource requirements should a real live exotic disease emergency unfold.

• The second phase of Exercise Taurus was being completed as this issue of Biosecurity went to press. We will bring more detailed coverage of the simulation in the next issue on 13 June.

Paul C Bingham, Exotic Disease Investigator, National Centre for Disease Investigation, Upper Hutt, phone 04 526 5600, paul.bingham@maf.govt.nz
Southern saltmarsh mosquito eradication update

The Ministry of Health advises the Government on all matters relating to human health and has an interest in organisms that may harm human health. That includes risks entering the country from outside our borders.

At the border, the Ministry of Health is mainly interested in people arriving who might be sources of infection. But people aren’t the only vectors for human disease. Rats and mosquitoes can also pose high human health risks, and human health port sanitation activities are constantly on the lookout for them.

One potential disease carrying pest that has slipped through is the southern saltmarsh mosquito (SSM), a possible carrier for the debilitating Ross River virus. The Ministry of Health is managing an eradication programme for the pest. This article reviews progress during October-December 2004.

Eradication programme

The SSM eradication programmes in Hawke’s Bay and Tairawhiti have been completed and the local public health services are undertaking routine monitoring of potential habitat as part of their ongoing saltmarsh surveillance.

The successful completion of the eradication programmes in Tairawhiti and Porangahau means the southern saltmarsh mosquito has been eradicated from the east coast of the North Island.

The last adult was detected in Mangawhai in December 2002. No larvae have been found at this site since the eradication programme was implemented. The eradication programme was successfully completed in Mangawhai in December 2004.

The last adult was detected in Whitford in April 2002 and the last larvae in November 2002. The eradication programme was successfully completed in Whitford in November 2004.

The last adult was detected in Kaipara in September 2003 and no larvae have been found at this site since February 2004. Treatment of habitat was completed in June 2004.

If no further southern saltmarsh mosquitoes are detected, the eradication programme will be completed in Whangaparaoa in March 2006.

In November 2004, the Government agreed to fund the development and implementation of a plan to eradicate the southern saltmarsh mosquito from about 800-900 hectares in the Wairau/Grassmere area in Marlborough.

Treatment of this area was already underway using targeted applications of Bacillus thuringiensis var. israelensis (Bti) as phase one of an attempted eradication programme, until decisions were made on the long-term response to the incursions. With the decision to move to phase two of an attempted eradication programme, the treatment programme will use a combination of aerial and ground-based applications of S-methoprene, supplemented with Bti. The eradication plan proposes the maintenance of an effective lethal concentration of S-methoprene in all identified wet habitats for two summers and for three high water events. This involves aerial applications of S-methoprene granules every 21 days over about 800-900 hectares of saltmarsh in the Wairau lagoons and Grassmere areas.

The issues with treatment agents and habitat mitigation around Lake Grassmere will be further investigated so as to accommodate, where possible, the needs of the certified organic saltworks without compromising the eradication programme.

The Wairau eradication plan also includes a communication strategy to build upon the successful model already established for keeping the community stakeholders aware of the programme. Stakeholders include iwi and hapu, local government, landowners, residents, NGOs, media and interested members of the public.

Tender for nationwide surveillance

SSM surveillance in the last quarter of 2004 was conducted by 11 public health services. In December 2004, the Ministry of Health requested tenders for a national saltmarsh mosquito surveillance programme from 17 potential providers. The request for tenders sought proposals that would provide consistent best practice surveillance activities, and will maximise opportunities for early intervention in response to saltmarsh mosquito incursions. The surveillance programme will follow the Ministry of Health’s guidelines for best practice for saltmarsh mosquito surveillance including, as a minimum, identification of all habitat and potential habitat (and the criteria for this) nationwide.

New Zealand BioSecure, a division of Southern Monitoring Services Ltd, was the successful tenderer.

Sally Gilbert,
Chief Technical Officer (Health), and Team Leader (Environment Team), Ministry of Health, phone, 04 495 4345, fax 04 495 4401, sally.gilbert@moh.govt.nz www.moh.govt.nz
Plans to bring in a new organism? Ask ERMA New Zealand first

As successive waves of human migrants fetched up on New Zealand shores, each brought its own retinue of plants and animals. Whether the introductions were practical (e.g. food crops), sentimental (e.g. song birds) or accidental (e.g. weed seeds in ships’ ballast), many have permanently changed the New Zealand environment. These days we have systems in place to manage the risk from further new introductions.

While accidental or illegal imports of new organisms will always happen, our border controls and surveillance systems are there to intercept and respond. But if you want to bring a new organism into New Zealand you will need to convince the Environmental Risk Management Authority (ERMA New Zealand) that it’s a good idea.

Between them, ERMA New Zealand and MAF manage the introduction of new organisms into New Zealand. In a nutshell, ERMA New Zealand decides on applications to bring in new organisms and sets conditions where approval is granted. MAF enforces these conditions, and also manages our biosecurity defences against illegal or accidental introductions (see also editorial and article opposite).

Heading the science team in ERMA New Zealand’s New Organisms Group is Geoff Ridley, a mycologist with a background in both forestry and agriculture. Geoff’s science team is complemented by applications and compliance teams, which together process and evaluate applications.

An application to bring a new organism into New Zealand will typically take 60-100 working days to process, depending on whether the organism is to be kept in containment or released into the environment – either unconstrained, or through controlled release (e.g. contained crops). ERMA New Zealand engages in a pre-application process with potential applicants to identify all of the necessary information before the serious risk assessment work begins on the applications. However once an application is formally received, there are time constraints built in to prevent the process dragging on too long, Geoff notes.

While the name of the agency would suggest an environmental focus, the risk assessment takes into account not only the environment but the health and safety of New Zealand’s people and communities.

Geoff says most of the applications involving release of a new organism into the environment are for biocontrol agents – something that will help control an already-established environmental pest. The concept of biocontrol is nothing new, but the science behind it is a lot more robust than in the days of well-meaning but ill-fated biocontrol introductions such as starlings (for grass grub) and ferrets (for rabbits).

Most of the biocontrol agents are insects that attack either weeds or pest insects, but occasionally fungi and bacteria are also used.

An example of a biocontrol for a weed is the boneseed leaf roller, recently approved for release. The Canterbury Regional Council is to use the insect to help control boneseed, a chrysanthemum-type plant that is colonising coastal and dry areas in the eastern South Island.

“No single biocontrol agent will be a silver bullet,” Geoff says. “It’s unlikely a biocontrol will ever completely eradicate a pest; they’re best used as part of an integrated pest management strategy.”

But it’s not all obscure insect species sucking the life out of pest weeds or other insects. ERMA New Zealand also receives some more exotic applications, such as those from tropical butterfly houses, which have applied to import hundreds of tropical species to keep in public display facilities.

“It’s a big job to get a handle on the biology of so many species,” Geoff admits. “We need to be sure that they can’t survive outside the tropical environment of the butterfly house, or adapt to our temperate climate.”

Zoo animals, or animals to be used in film-making, can also feature in applications to ERMA New Zealand. This is a great example of where ERMA New Zealand and MAF work in tandem, ERMA New Zealand evaluating the risk in accordance with the HSNO Act and MAF reviewing the Biosecurity Act requirements. The latter Act can also affect these applications – for example, some reindeer wanted for filming last year couldn’t be imported because of a disease risk.

Geoff says that the environmental risk from animals can be out of all proportion to their size.

“A single large cat would present a significant risk to anyone it encountered, but the chances of a population establishing in the environment are negligible. On the other hand, the escape of small birds from an aviary could cause big environmental harm if a population established and spread, displacing native species or feeding on crops.”

On a final cautionary note, Geoff says he often hears that risk assessment in unnecessary as the new organism is unlikely to become a pest, but just ask the Australians. “It took several attempts to get rabbits established there.”
In the editorial for this new organism-themed issue of *Biosecurity*, ERMA New Zealand Chief Executive Bas Walker explained how the roles of MAF and ERMA complement each other with respect to new organisms imported deliberately and with proper approval. In this article, Mike O’Hara of Biosecurity New Zealand’s Policy and Business Group takes a closer look at MAF’s role.

MAF became accountable for the new organisms provisions of the Hazardous Substances and New Organisms Act 1996 (HSNO) after the Act was amended in 2003. The purpose of HSNO is to protect the environment and the health and safety of people and communities by preventing or managing the adverse effects of hazardous substances or new organisms. MAF’s HSNO Act role complements its Biosecurity Act accountability for the management of pests and unwanted organisms.

**Compliance and enforcement**

Compliance covers everything from general advice to the public and specific advice to holders of ERMA approvals, to management of inspections and corrective actions for non-compliances. Enforcement covers investigation and prosecution of breaches of the Act.

**New organisms compliance roles**

Biosecurity New Zealand provides advice on the importation requirements for new organisms, as well as its role in import management under the Biosecurity Act. Where a new organism approval is also required, the applicant is directed to ERMA New Zealand.

Biosecurity New Zealand licenses containment facilities under the Biosecurity Act. These facilities are approved to hold and develop new organisms, including genetically modified organisms. Biosecurity New Zealand writes standards for the operation of these facilities, which are then approved by ERMA New Zealand under the HSNO Act.

ERMA sets the controls on imported or developed new organisms. When it receives an application for the import or development of a new organism, it discuses the controls that might be set with stakeholder agencies, including Biosecurity New Zealand and the MAF Quarantine Service (MAFQS).

The MAFQS Biosecurity Officers inspect facilities that hold new organism approvals and field test sites of new organisms on behalf of Biosecurity New Zealand. These inspections are to check that the controls set by ERMA are being met, and standards adhered to. The inspector also advises on approaches to compliance and other operational matters.

Where non-compliance is found, the inspector will discuss this with the approval holder, with the aim of correcting the non-compliance so that any risk is managed. MAFQS also liaises with Biosecurity New Zealand, where specific advice is needed or significant action might be taken.

The three agencies – Biosecurity New Zealand, MAFQS and ERMA New Zealand – meet regularly to discuss operational issues and improvements.

**New organisms enforcement role**

The MAFQS Enforcement Group and the Biosecurity New Zealand Compliance and Enforcement Group (CEG) both have an enforcement role under the HSNO Act. The MAFQS Enforcement Group may identify an issue related to a new organism, during its routine border management activities and, where a breach of HSNO is suspected, a CEG investigator will be notified.

CEG receives intelligence from a wide variety of other sources, including the public through the MAF Hotline. CEG investigates any alleged breaches of HSNO and, based on the investigation, may recommend prosecution action to the Assistant Director-General of Biosecurity New Zealand.

**The new HSNO challenges**

The 2003 amendment to HSNO added a new ERMA approval category: ‘release with controls’. Here, a new organism or product containing a new organism is released but remains subject to a series of controls. This category includes human or veterinary medicines that contain new organisms. At time of publication, no release with controls had been approved.

The specific challenge is that these ‘release with controls’ new organisms can be widely dispersed geographically, especially in the case of a medicine. Biosecurity New Zealand is working closely with colleagues in other agencies to define mechanisms so that the required compliance and enforcement can occur appropriately, once these approvals are made.

Mike O’Hara,
Project Manager,
Biosecurity New Zealand Policy and Business Development,
phone 04 474 4283,
fax 04 474 4257,
mike.ohara@maf.govt.nz
Biosecurity response capability: Investing in human capital

Like other civil disasters, major biosecurity emergencies are few and far between. The task for Biosecurity New Zealand is to maintain a properly trained, fully staffed ‘standing army’ ready to spring into action at any time and anywhere. Like volunteer firefighters, most of these people have day jobs although they’ll usually be related to their emergency responsibilities. It may be years or even decades before they’re needed. Individuals may retire, having never been required to take part in an exotic disease response. That’s a success in biosecurity terms. But it’s also a challenge in logistical terms.

Growing Biosecurity Preparedness

The level of Biosecurity preparedness and response capability in the event of a disease outbreak has major implications for New Zealand’s economy. An essential component of Biosecurity New Zealand’s ability to respond to an exotic disease incursion is the availability of knowledgeable and skilled people who can quickly assume a number of response-related roles.

At all times, Biosecurity New Zealand needs to have a comprehensive picture of what human resources are available. There needs to be assurance that personnel are available who can perform certain roles in an exotic disease response (EDR) context, clearly defined to a standard. Knowing the competence of this human resource gives Biosecurity New Zealand a greater assurance of response capability.

Preparing a Human Resource Pool

In mid-April 2004, Biosecurity New Zealand embarked on a project to design, develop and implement a competency-based training framework and programme suitable for preparing a human resource pool capable of handling a large-scale exotic disease response.

The project has been focused on four key areas:

1. EDR processes, procedures, policies and related information
2. An online repository or Knowledge Base integrating these information resources within an intuitive, easy-to-use, logical structure
3. A New Zealand Qualifications Authority (NZQA)-registered Competency Framework that defines the skills and knowledge required by EDR role holders to be effective in managing an exotic disease response; and
4. A programme to meet the training needs of the EDR roles.

Recognising Competency

One of the critical success factors for this project was the requirement to formally recognise exotic disease response role holders’ abilities. The principal vehicle for providing this recognition both nationally and internationally is the National Qualifications Framework (NQF).

Along with a significant body of work in the other areas, a large number of unit standards are currently emerging from this project.

Biosecurity New Zealand has engaged with the Public Sector Training Organisation (PSTO) in order to register such nationally endorsed public sector competency standards and qualifications on the NQF. It is also likely that these unit standards will also be recognised in Australia.

Responding More Effectively to an Incursion

By the end of this project, Biosecurity New Zealand will be in a position to respond more effectively and efficiently to exotic disease outbreaks, by ensuring the right tools and resources are available to:

- Provide EDR role holders with access to the right information in the right format via the EDR Knowledge Base
- Identify personnel competent to perform specific EDR roles
- Source and train EDR role holders as and when required
- Upskill the EDR roles on a regular basis using refresher training; and
- Train additional role holders in the face of an exotic disease outbreak.

Biosecurity New Zealand is consulting widely with a number of stakeholders in the development of these unit standards – both directly and via PSTO.

As part of the unit standard consultation process, Biosecurity New Zealand has distributed the draft documents for public consultation and comment. They are available on the Biosecurity website.

For the unit standard consultation document:


Clifton King,
Incursion Systems Designer,
Biosecurity New Zealand,
phone 04 474 4199 or 027 447 1791,
fax 04 470 2730,
clifton.king@maf.govt.nz
When eucalyptus trees were established in New Zealand many years ago, they were a forest-grower’s dream. Certain species grew fast, produced attractive hardwood and were excellent for pulp. But the fairy-tale plantation crop was destined for trouble when the eucalyptus tortoise beetle, Paropsis charybdis, entered the scene. The arrival of this pest triggered an ecological mini-drama that perfectly illustrates the complexity of biological-control systems.

Paropsis found its way across the Tasman early last century, bringing with it a voracious appetite for eucalyptus foliage. Eucalypt growers watched in despair as stands of favoured species were repeatedly stripped of their leaves. When chemical sprays proved impractical, the search was on for a biological “good-guy” who could stop the villain in its tracks.

In the late 1970s, Forest Research scientists introduced Cleobora mellyi, a biological control agent that it was hoped could run the pest out of town. Although the tiger-striped Australian ladybird enjoys Paropsis eggs and larvae as part of its diet, it failed to thrive in New Zealand eucalypt plantations. Cleobora was liberated at two sites, one in the central North Island and one in the Marlborough Sounds, but became established only at the latter. With prospects for the ladybird not looking good, Forest Research scientists lined up another potential champion.

Enter Enoggera nassau, a parasitic wasp deliberately introduced from Australia in 1987. Dr Sarah Mansfield, a Forest Research entomologist, says that Enoggera proved to be a very effective control agent, storming clusters of Paropsis and laying its own eggs inside them. By eating the enemy’s eggs inside-out, the heroic Enoggera looked set for victory. But the unexpected arrival of a new bad-guy foiled the best-laid plan.

Baeoanusia albifunicle is an Australian wasp that crept into New Zealand undetected in 2001 and began to prey on Enoggera. Sarah explains that while Enoggera was laying its eggs in Paropsis, Baeoanuisa was, in turn, busy laying its eggs in Enoggera, thereby undoing all the good that the biological control programme had achieved. With its predator itself under attack, Paropsis bounced back and continued its relentless attack on the defenceless eucalypt trees.

As the struggle between parasitoid and hyperparasitoid played out in the chewed plantations, forest managers and scientists saw a fresh role for Cleobora, the first of the biocontrol agents that had failed to thrive after it was introduced in the 1970s. In a new bid to cut Paropsis off at the pass, they collected Cleobora from the Marlborough Sounds and are now mass-rearing them for another go at releasing them into North Island plantations.

Sarah says that while Cleobora did not establish well when it was first introduced, the predatory insect will now stand a better chance of survival due to changes in the forest ecosystem. “Cleobora seems to like a mixed diet of Paropsis eggs and psyllids. With all the new species of Australian insects that have found their way into the country, there is a much bigger range of psyllids in the North Island forests than there was twenty years ago.”

As highlighted in other articles in this issue of Biosecurity, importing new organisms as biological control agents into New Zealand involves significant work to establish that they will not pose an environmental hazard – so Sarah believes it is worth giving Cleobora another chance. Given that New Zealand produces up to $100 million worth of plantation hardwoods a year, forest owners agree. The redeployment of Cleobora was initiated by farm forester, Dean Satchell, with support from the MAF Sustainable Farming Fund. Further funding is provided by the Forest Biosecurity Research Council (FBRC), a collaborative venture between MAF, Forest Research, the New Zealand Forest Owners’ Association and Lincoln Centre of Research Excellence (CoRE).

sarah.mansfield@forestresearch.co.nz
“Be prepared” was the key message given at the Food and Agriculture Organisation-sponsored ISPM 15 workshop hosted by the Canadian Government and held in Vancouver, Canada during the first week of March. Over 170 delegates from around 80 countries attended the workshop on the practical application of ISPM 15. New Zealand was represented by Dr Michael Ormsby from Biosecurity New Zealand.

**What is ISPM 15?**

ISPM 15 is the abbreviated name for the *International Standard for Phytosanitary Measures number 15: Guidelines for Regulating Wood Packaging Material in International Trade*. Issued under the International Plant Protection Convention (IPPC) in 2002, the standard is only now beginning to be brought into force by the major trading blocks around the world.

**When does it come into effect?**

On 1 March 2005 the European Union began requiring that all solid wood packaging entering the region comply with ISPM 15. The North American countries (Canada, Mexico and USA) will begin mandating the same on 1 September 2005. New Zealand will also require imported wood packaging material to comply with ISPM 15 from 1 September 2005.
Who is affected?
All exporters or importers of goods – commercial or household – to or from New Zealand.

All goods, or just some goods?
This is the tricky part. You may think you will not be affected as your goods may be packed in cardboard boxes or on plastic trays, but ISPM 15 covers all types of solid wood packaging. So if, for example, your commercial goods or household belongings are being shipped in containers, and during loading someone adds pieces of wood to secure the load, those pieces of wood or dunnage must also comply with ISPM 15.

How do I comply?
ISPM 15 basically states that all solid wood packaging material thicker than 6mm must be treated by either heat or methyl bromide fumigation and stamped with an official ISPM 15 mark. Use of the mark within any country is controlled by the Government of that country. In New Zealand, for example, you must be registered and meet certain requirements before you can apply the mark in any way.

Are countries ready for ISPM 15?
Many countries have yet to begin their preparations, and no countries or regions are fully prepared. Even in New Zealand – where in April 2003 we were one of the first countries to begin accepting ISPM 15-compliant wood packaging, and in 2004 established a registration system for ISPM 15-compliant wood packaging manufacturers – it is doubtful all who need to know are aware of the impact this standard will have on them.

What do I need to do?
Begin now by making sure the wood packaging material you or your freight forwarders use is ISPM 15 compliant. Biosecurity New Zealand provides a list of registered ISPM 15-compliant wood packaging manufacturers on the Ministry of Agriculture and Forestry web site:


If you import goods into New Zealand, make sure your overseas supplier knows that they must use ISPM 15-compliant wood packaging material marked in accordance with the standard.

What happens if I don’t comply with ISPM 15?
It depends on the country. The United States is indicating that they will send the goods back if they cannot easily separate (at the wharf) the goods from the non-compliant wood packaging material. For most countries (including New Zealand), there will be extra costs and delays involved in clearing your non-compliant packaging across the border. In some cases, goods may be damaged during the more difficult clearance process.

Should I use plastic instead of wood?
While the new international requirements make it more difficult to use wood-based packaging, many forms of manufactured wood are exempt under ISPM 15. It is also important to consider the overall environmental impact of the different types of packaging, as wood is by far the most environmentally friendly and versatile form of packaging currently available.

Where do I go for further information?
The MAF website is a good start:


The site contains information on how to become a registered ISPM 15-compliant wood packaging manufacturer, a list of ISPM 15-compliant wood packaging manufacturers, a copy of ISPM 15, and some information on how other countries or regions are enforcing ISPM 15.

Dr Michael Ormsby,
Senior Adviser,
Risk Analysis,
Biosecurity New Zealand,
phone 04 498 9630,
michael.ormsby@maf.govt.nz
For the small select group of international experts who attended all of the meetings, the event was known as the “triple crown”. Three international meetings were run consecutively in Victoria and Vancouver in Canada over a three week period beginning 21 February 2005.

**International Forest Quarantine Research Group (IFQRG)**

The first was a meeting of the International Forest Quarantine Research Group, a group established to provide a mechanism where critical forestry quarantine issues can be addressed through discussion and collaborative research. It brings together scientists and phytosanitary officials to foster multidisciplinary approaches to forest quarantine-related problems of global significance.

Chairied by Eric Allen from the Natural Resources Canada, scientists and regulators from Europe, South and North America, Asia, and the South Pacific region participated in only the second annual meeting of the group. The meeting discussed and reviewed a number of forest quarantine-related research issues that had been investigated by researchers over the preceding 12 months.

Subjects included:

- the review of the heat treatment and methyl bromide treatments included in the *International Standard for Phytosanitary Measures number 15: Guidelines for Regulating Wood Packaging Material in International Trade* (ISPM 15)
- developing criteria for submitting and evaluating proposals for treatments to be included in ISPM 15
- the review of potential new treatments for wood traded internationally, including chemical impregnation, irradiation, microwave, fumigation, and modified atmosphere treatments
the development of a global interception database and information-sharing systems
the risk of re-infestation under bark on treated wood products
interpretation and implementation issues associated with ISPM 15.

The meeting participants agreed that:

- while there was no evidence to suggest the heat treatment listed in ISPM 15 was not as effective as stated, the methyl bromide treatment listed in ISPM 15 did not meet the required level of efficacy and would need to be reviewed
- while a number of new treatments showed promise for wood traded internationally, further research would be required before they could be accepted
- research demonstrated that bark re-infestation after treatment was possible, but further research would be needed to determine the level of risk this posed to international trade.

The research group next meets in Rome in December 2005 to review this year's research on these issues.

**Workshop on the practical application of ISPM 15**

The Food and Agriculture Organisation sponsored a workshop on ISPM 15 hosted by the Canadian Government and held in Vancouver, Canada during the first week of March, 2005 (see ISPM 15 on page 12).

On the first day of the workshop, Dr Ormsby presented a summary of how New Zealand and Australia have implemented ISPM 15 for both imported goods and wood packaging manufacture. Dr Ormsby later facilitated a break-out group discussing barriers to implementing ISPM 15 and potential solutions for countries or regions experiencing difficulties.

The workshop was particularly successful, achieving much of what it set out to achieve. While the focus was principally to provide assistance where possible to developing and least-developed countries, all participants gained a valuable understanding of the problems involved in implementing ISPM 15, and the many novel solutions available to assist countries with more limited resources available for biosecurity.

**IPPC Technical Panel on Forest Quarantine**

The third and final meeting was of the Technical Panel on Forest Quarantine. There are currently four technical panels or standing committees working under the IPPC that were established to provide advice or develop standards on diagnostic protocols, fruit fly pest free areas and systems approaches, phytosanitary treatments, and forest quarantine.

Members of the technical panels are selected by the International Plant Protection Convention (IPPC) Secretariat from appropriate international experts nominated by national plant protection organisations.

New Zealand is currently represented on all four technical panels, with Dr Michael Ormsby chairing the Technical Panel on Forest Quarantine and involved as a member of the Technical Panel on Phytosanitary Treatments. The focus of the Technical Panel on Forest Quarantine is to review relevant technical and scientific information to provide guidance to the IPPC as requested on the development, amendment and revision of forest quarantine-related standards.

The Technical Panel on Forest Quarantine was able to use the information gathered at the two earlier meetings to formulate recommendations on how to manage issues identified with ISPM 15.

The technical panel concluded that ISPM 15 was fundamentally sound in principle, but the successful implementation of the standard internationally would be greatly assisted if the standard was reviewed to remove a number of inconsistencies and improve clarity in the text. More specifically the technical panel, based on advice received by the IFQRG, recommended that the methyl bromide fumigation treatment within the standard be updated to ensure it is as effective as was originally intended for the standard.

Other issues discussed by the panel included the need for internationally applicable forest surveillance and response standards, and a standard to deal with infestation or re-infestation of wood products by hitch-hiker pests during international trade.

The next meeting of the technical panel is scheduled for February 2006, where it is hoped the panel will complete the review of ISPM 15.

**International Forest Quarantine Research Group:**

- [www.forestry-quarantine.org/](http://www.forestry-quarantine.org/)

**Documents and presentations made at the workshop:**

- [www.ippc.int/IPP/En/default.jsp](http://www.ippc.int/IPP/En/default.jsp)

Dr Michael Ormsby,
Senior Adviser, Risk Analysis,
Biosecurity New Zealand,
phone 04 498 9630,
michael.ormsby@maf.govt.nz
Two kinds of images hit home the impact of the 2001 foot and mouth disease outbreak in the UK. The first stimulates a raw emotional response. There are many variations, but the theme is consistent: bloated, burning carcasses, animals slaughtered in attempt to halt the spread of FMD. The second image is a step removed, a dispassionate statistical representation showing the impact of contiguous culling on the spread of the disease. Same story, different way of telling it.
The rationale behind these images was one of a series of models used in the UK to predict the effectiveness of control options available to combat FMD. Those models are currently being criticised by some scientists who refute the need for contiguous culling – slaughtering all stock within a set radius of an infected farm.

However, decision-makers faced with balancing a range of social, economic, environmental and political considerations in ratifying the best policy for their country in a time of crisis do not have the luxury of hindsight.

It is important to learn from the experiences of other countries. To that end, an international workshop was held in Canberra from 8-10 March to present policy-makers with the various models developed in the QUADS countries (New Zealand, Australia, Canada, United States) and review the current status of FMD policy development in the various countries. Keynote speakers were Dr John Wilesmith of DEFRA, UK and Mr Nick Taylor, University of Reading, UK. Dr Wilesmith shared insights into the provisions for modelling in the UK post 2001.

New Zealand participants at the workshop included technical modellers: Matthew Stone of the National Centre for Disease Investigation, Mark Stevenson of Massey University and Robert Sanson of AgriQuality; two senior advisers from Biosecurity New Zealand’s Surveillance and Incursion Response team, Dorothy Geale and Andre van Halderen, and senior Biosecurity New Zealand policy analysts, Colin Holden and Susan Keenan.

Models are a representation of reality that can help test hypotheses and answer questions.

Significant recommendations were made following the UK experience on the proper uses of disease models. In addition, many countries have developed simulation models to prepare against such outbreaks. Models need to be used carefully by people with knowledge of underlying assumptions and limitations of the models. Proper representation of results to policy-makers and decision-makers is critical to the success or failure of using these models.

As a result of the workshop, an action plan has been developed to promote better understanding of the role of modelling in policy development, and opportunities for collaboration by QUADs countries. Actions in the plan include:

- establish an EpiTeam subgroup to the Quadrilateral Emergency Management Working Group with a work programme to develop a bank of scenarios; collaborate on approaches to data collection and sources; standardised data elements to allow ease of data exchange among modellers; promote animal movement studies at various scales to better describe patterns and model parameters; recognise the need for decision support early in an outbreak when data is insufficient for reliable modelling; validation and gap analysis in modelling methods; background risk profiling/vulnerability analysis and share design specifications
- draft guidelines on the use of models in animal health emergency disease management
- collaborate on validation of epidemiological models by sharing common datasets and approaches
- refine models as the basis of gaming as an alternative to simulation exercises for senior management analogous to that used for military commanders
- build awareness with policy staff who are familiar with economic and meteorological forecasts
- recognise the need for succession planning and broadening the skill base for modelling
- build relations with other disciplines such as meteorology, economics, public health and defence
- conduct marketing analysis to determine public acceptance of modelling
- strengthen international modelling capacity through training courses provided by OIE Collaborating Centre on Animal Disease Surveillance and Risk Analysis (CEAH)
- encourage the establishment of a virtual OIE Collaborating Centre on epidemiological modelling
- propose a special edition of OIE Scientific and Technical Review on application of modelling to support animal health emergency disease management
- promote an Animal Health Terrestrial Code chapter on guidelines for the use of disease models in animal health emergency disease management.

Modellers and policy-makers need to work together to develop the most efficient methods of controls for FMD outbreaks.

Dorothy Geale DVM PhD BSc (Hons),
Senior Adviser (Animals) Surveillance and Response,
Biosecurity New Zealand,
phone 04 498 9884, mobile 027 223 1932,
fax 04 474 4133,
dorothy.geale@maf.govt.nz

Participants at the Canberra workshop.  Photo: Robert Sanson.
In February this year, Biosecurity New Zealand held a workshop in Wellington with environmental management staff from regional councils across the country to kick off the establishment of a formal relationship with regional councils to manage the burial of carcasses in the event of an unwanted animal disease outbreak. This will take the form of a memorandum of understanding (MOU).

The workshop was well attended by staff from 13 of the 16 regional councils, and a commitment from the three councils that couldn’t attend to be involved in this process.

Everyone recognised that Biosecurity New Zealand and regional councils have a common interest in working together on contingency planning for the burial of carcasses in a biosecurity emergency. All agencies want to be prepared and able to respond quickly if we need to.

The memorandum of understanding will provide Biosecurity New Zealand and regional councils with clarity about:

- the broad disposal strategy that Biosecurity New Zealand will pursue in the event of an FMD outbreak
- what each of the agencies will do before, during and after an outbreak.

The memorandum will also include provision for Biosecurity New Zealand and councils to develop and agree, as soon as possible, specifications for the construction of burial facilities for the disposal of carcasses. This is so that suitable facilities can be built under urgency as needed.

The specifications will also address the location of burial facilities to ensure that short and long term adverse environmental effects are avoided or minimised, having regard to physical, geological, hydrological and cultural factors.

Biosecurity New Zealand and councils will also work together on a programme to map regional site characteristics (using GIS systems) so that suitable sites for burial facilities can be located rapidly in a biosecurity emergency.

It is expected that the memorandum will be completed in June this year, with Biosecurity New Zealand and regional councils continuing to work together to complete contingency planning for carcass disposal.

Dorothy Geale DVM PhD BSc (Hons), Senior Adviser (Animals) Surveillance and Response, Biosecurity New Zealand, phone 04 498 9884, mobile 027 223 1932, fax 04 474 4133, dorothy.geale@maf.govt.nz

Field trips: Riccarton Bush and Christchurch airport, Port Hills Reserves, Christchurch wetlands and Lincoln biosecurity facilities.

Public outreach session: an opportunity for the public to learn about biosecurity from the experts, and assist in the battle against unwanted pests.

For registration forms: www.biosecurity.org.nz

For further information:

Ali Howard, ph 03 546 6338, ali@nzdirect.co.nz or Hugh Gourlay, gourlayh@landcareresearch.co.nz

The mass slaughter of livestock in the UK during the 2001 foot and mouth disease (FMD) outbreak presented authorities there with huge logistical problems when it came to carcass disposal. Fortunately New Zealand has never experienced an exotic disease outbreak on such a scale, and hopefully we never will. But good contingency planning requires more than hope. Safe disposal of thousands of tonnes of infected and decomposing animal carcasses requires some very careful planning and good inter-agency cooperation.

Carcass disposal workshop sets scene for agreement

Disposing of carcasses after mass slaughter presents big logistical challenges.

Invitation to pest management seminar


Session topics: impacts and management of pest mammals, weed management, aquatic plant and animal pests, advances in biocontrol, modeling invasive species, weeds awareness and lifting our game.

Workshops: use of internal borders, pest exclusion techniques, biosecurity policy, dealing with the media, how to utilise biosecurity databases and other information sources.
People and animals: A timeless relationship

The International Association of Human-Animal Interaction Organisations (IAHAIO) is a working partner to the World Health Organisation. Founded in 1990, it promotes research, education and sharing of information on the human-animal bond, notably the role that animals play in human well-being. Senior Adviser Animal Welfare Ian Dacre last October attended the IAHAIO’s 10th International Conference on Human-Animal Interactions.

Organised by the British-based Society for Companion Animal Studies (SCAS), on behalf of IAHAIO, the Glasgow conference attracted over 500 delegates from more than 30 countries. A broad range of research and field experiences were presented from a variety of disciplines including medicine, nursing, veterinary medicine, clinical psychology and sociology. Results from animal-assisted programmes included the presence of animals in residential care homes, hospitals, schools, prisons, and rehabilitation centres, dealing with not only normal human development, but also mental, emotional and physical illnesses.

In the opening plenary lecture to the conference, on the historical aspects to the human-animal bond, Dr Aubrey Manning illustrated how “human associations with their companion animals have proved overwhelmingly valuable to us and enriched our lives for millennia”. Going on to give many examples as to how animals – both wild and domesticated – have and still do influence our daily lives through superstition, cult, religion and sport, Dr Manning gave a word of caution that man was only now beginning to understand that “if animals cannot flourish naturally on a planet whose life-support systems are in good order, then neither can we”. Man’s role was more of animal stewardship than their domination, he added.

Many of the conference’s themes were identified by Prof. Kurt Kotrschal from the University of Vienna, including overwhelming support for the idea that “the ‘animal drug’ should be implemented quickly and routinely in a number of societal contexts and institutions. We need it...Western societies really need it!

One of the problems identified by Prof. Kotrschal was a “gap between knowing and doing”. Because this field of research was relatively young, it would take time and patience for awareness of the benefits companion animals convey to humans to penetrate society and finally reach the decision makers. Two areas highlighted for greater attention were the need for more multidisciplinary research, and more effective lobbying to increase public awareness and acceptance of programmes incorporating the ‘animal drug’.

The next IAHAIO conference is to be held in Japan in 2007.

Information about IAHAIO and the next conference:

- www.iahaio.org
- ian.dacre@maf.govt.nz
- phone 04 498 9945
- earl.culham@maf.govt.nz

Animal welfare prosecutions

Two separate MAF prosecutions of farmers for mistreatment of animals have resulted in fines, community service, and one farmer being banned from farming for two years.

Ill treatment of cattle

The first prosecution, that of Kaitaia farmer Alan William Summers, resulted from an animal welfare complaint about the state of the animals on Mr Summers’ farm and a subsequent MAF investigation in July 2002. A five-day operation involving MAF officials, farm consultants and vets established serious animal welfare concerns. The farm was in poor condition and several cattle were in such poor condition that they had to be euthanased. A further 318 were moved to alternative grazing.

Summers, who had previously been convicted on animal welfare charges in 1989 and investigated again in 1999, was charged with three counts of ill treatment of cattle from the 2002 investigation. He pleaded guilty on 15 February 2003 and was sentenced in the Whangarei District Court on 11 March. He was sentenced to 350 hours’ community work, disqualified from farming cattle for two years and ordered to pay $4000 costs.

Illegal deherveting of deer

The second prosecution was that of Culverden farmer John Craig Rutherford, his company Morna Downs Limited, and two employees, Hamish Arthur Zuppichich and Jason Edward Neal. All pleaded guilty and were sentenced in the Rangiora District Court on 17 March.

Rutherford faced a charge of procuring any person to do an act, namely deherveting of deer, as a result of which an animal suffers unreasonable or unnecessary pain or distress, and another charge of performing a significant surgical procedure on a stag, not being a veterinarian or under the supervision of a veterinarian. Rutherford was fined $7500. Morna Downs Limited was also fined $5000. Morna Downs Limited was also charged with performing a significant surgical procedure on a stag, not being a veterinarian or under the supervision of a veterinarian and was fined $7500.

Zuppichich and Neal each faced a charge of performing a significant surgical procedure on a stag, not being a veterinarian or under the supervision of a veterinarian, and a charge of ill-treatment of deer. They were each fined$750.

The offending first came to light in December 2003 when it was noticed that eight of 20 stags Rutherford sent for slaughter had been deherveted with the antler cut too low. An inspecting veterinarian believed it was done by an unlicensed operator without anesthetic.

Deherveting is a controlled surgical procedure that can only be carried by a veterinarian or an accredited velveter who has completed a course run by the National Velvet Standards Body.

- www.iahaio.org
- ian.dacre@maf.govt.nz
- phone 04 498 9945
- earl.culham@maf.govt.nz

- Team Manager Animal Welfare, Compliance and Enforcement Group, Biosecurity New Zealand, phone 09 300 1642, earl.culham@maf.govt.nz

ISSUE 59 | BIOSECURITY NEW ZEALAND | 19
Around 100 members of the RDS gathered in central London for the society’s 2004 annual general meeting. This year the Glasgow-SmithKlein Award 2004 for contribution to animal welfare was awarded to Dr Robert Hubrecht for his life’s work including developing the Laboratory Animal Handbook in 1967, and developing the ‘3Rs’ approach to laboratory animal use while working for the University Federation for Animal Welfare (UFAW).

Coalition for Medical Progress

Following this presentation, invited speaker Dr Philip Connolly, Director for the Coalition for Medical Progress (CMP) addressed the meeting on the work of the CMP.

It is their perspective that medical advances depend on some degree of animal experimentation, and that more trust has to be gained by the general public towards professionals involved with animal research – including not only the researchers and their assistants, but also bodies involved in their regulation.

Dr Connolly explained how the CMP was led by public concerns to animals used in research. This includes concern over animal suffering, the medical benefits gained from such research and possible alternatives.

The arguments currently being used by CMP in their campaigns to communicate with the general public included:

- getting people to identify it was ‘their disease’ that required the research
- animal experimentation was used as a last resort in the research process
- similar research was also carried out in humans
- people should equally consider the fact “…but we eat them…”
- the clear cost/benefit for animal experimentation
- such experimentation is best done under controlled conditions in the UK than abroad
- animal experimentation is legal and covered by strict guidelines.

In closing Dr Connolly suggested that the CMP could develop its relationship with the relatively few celebrities who had publicly supported the use of animals in medical research.

Media perspective

Journalist and television presenter Vivienne Parry gave a media perspective on how medical science had been received in the past and how attitudes to animal welfare and use of animals in research had changed in the last two decades.

She said there were many more neutral and balanced articles on scientific advances involving animals in the current popular press than was the case twenty or even ten years previously. Ms Parry said the media’s agenda was “not about education, but news”.

Ian Dacre, Biosecurity New Zealand Senior Adviser Animal Welfare, late last year attended the annual meeting of the UK-based Research Defence Society (RDS) and the Stephen Paget Memorial Lecture. While its name suggests links to the defence industry, the society is, in fact, concerned with communicating on the use of animals in research. Issues that swirl around animal experimentation in the UK also have resonance in New Zealand, and Ian reports here on some of the highlights of the occasion.
She challenged scientists not to “play by the rules”, or be defensive, but to become proactive using such popular media as the tabloid press, and “not just the Sunday Times.”

She asked that young scientists be given proper media training so more would be willing to talk with journalists. It was suggested that journalists often became unnecessarily suspicious of scientists because of the defensive nature of communication between the two groups.

**Extremism explored**

Dr Simon Festing gave his inaugural lecture as newly appointed CEO of the RDS on “The Anatomy of Extremism”. Although extremism in the current climate was said to be a “short-term problem,” Dr Festing noted of more immediate importance was the imminent introduction of the Freedom of Information Act and the impact this could have on universities with respect to any research involving animals.

Dr Festing said complaints by anti-animal research activists about a lack of media coverage suggested that, currently, the RDS was winning the media battle. He also highlighted the need to identify the difference between extremists and antivivisectionists, with the latter being a more moderate pressure group. He said institutions being targeted by activists should establish which group(s) were involved and contact the RDS for advice. He also noted how extremists had become more sophisticated in their attacks on research institutions, e.g. by targeting investors.

The RDS was pushing to improve protective legislation and police protection for such institutions. Many ‘antis’ were now regarded as anarchists rather than antivivisectionists – especially in the north of England.

The final point raised by Dr Festing was the difficulty some construction and research companies faced to insure their property (or development) against attacks by extremists.

**New zoonoses bigger threat than terrorism**

The 74th Stephen Paget Memorial Lecture was delivered by Lord May. He began by quoting W.H. Stewart, who, as the US Surgeon-General in 1967, said “the time has come to close the book on infectious diseases”. Stewart was referring to previously catastrophic diseases such as small-pox, diphtheria and scarlet fever, all of which had been controlled or nearly eradicated on a global scale.

Examples of the current epidemiological trends of the AIDS virus, and the discovery of its origin in people eating infected bush-meat, was one example of how most of the last century’s human disease had come from close contact (including domestication) with animals.

Next year it is estimated that, for the first time in man’s existence, over 50 percent of the world’s population will be living in cities or the slums around them. Lord May considered how this would be the ideal environment for the emergence of new pathogens crossing over from animal to human populations. He said “global terrorism” was ranked a distant third behind the potential emergence of these new zoonoses, or those that may arise following the likely increase in use of xenotransplantation, as serious threats to mankind.

---

**What is the Research Defence Society?**

Founded in 1908 by Dr Stephen Paget, the Research Defence Society (RDS) is the UK organisation representing medical researchers in the public debate about the use of animals in medical research and testing. RDS provides information about the need for animal research, the controls under which it is carried out, and the benefits to medicine. The society also helps government and animal welfare groups to promote best practice in laboratory animal welfare and develop non-animal technologies. RDS was a leading participant in discussions which led to UK controls on animal research introduced in 1986. The society advises and informs its members and other organisations on aspects of animal research, animal welfare, legislation and animal rights activities. RDS is funded by its membership of about 5000, mainly comprising medical researchers, doctors and vets.

---

**Brendan Gould** joined the Post-clearance Directorate in November 2004 as a Technical Adviser – Surveillance and Incursion Response (Animal Kingdom). He comes from the Ministry of Fisheries where he had worked since July 2004 in the Marine Biosecurity group. Previously he was employed by the New Zealand King Salmon Co. in the Marlborough Sounds Performance Division. He has a Masters degree in Marine science and experience in marine environmental monitoring, ecology, biology, marine research, aquaculture broodstock development, biosecurity, fish health and disease surveillance and response, animal husbandry, feed development and marine farming practices.

---

**Kerry Bodmin** joined the Post-clearance Directorate as a Senior Adviser, Surveillance and Incursion Response (Plant Kingdom). With an environmental science and plant ecology background, she had initially worked in the areas of weed and pest management for an NGO and local government. More recently she held a biodiversity/biosecurity position in the Parks Department, Waitakere City Council, leading the Council’s input into MAF’s painted apple moth eradication programme and contributing to the Dutch elm disease and gum leaf skeletoniser responses. Kerry’s role in Biosecurity New Zealand will include responding to incursions, and will initially focus on Didymo (Didymosphenia geminata), the alga discovered last October in Southland (see Biosecurity 57, 1 February 2005).

---

**Nasser Ahmed**, BVSc, MVSc, PG Dip. Wildlife Management, recently joined the Post-clearance Directorate as a Technical Adviser, Surveillance and Incursion Response (Animal Kingdom). Before moving to New Zealand in 2004, Nasser was an Associate Professor for 13 years at his alma mater, Assam Agricultural University (India). In addition to his teaching responsibilities, Nasser was the Wildlife Health Coordinator of a United States Fish and Wildlife Service-funded programme, advising forest departments of nine states in eastern region of India in wildlife health matters and disease containment strategies. In his new position, Nasser is working in avian influenza, imported animal verification, animal identification, ruminant protein in feed, and also coordinating the publication of Surveillance magazine. He is also working towards his PhD.

---

*Ian Dacre,*

Senior Adviser Animal Welfare,
Biosecurity New Zealand,
phone 04 498 9945,
ian.dacre@maf.govt.nz
Close look at Australian grain and seed facilities

Dr Dave Nendick and Rob Taylor, Senior Advisers for Biosecurity New Zealand, travelled to Melbourne and Adelaide during February 2005 to observe pre-export activities conducted by the Australian Quarantine Inspection Service (AQIS) to meet MAF’s import requirements for grain. While there, they also attended the second meeting of the Trans-Tasman Grain and Plant Import/Export Working Group (TTGPIEWG).

Meeting attendees included Mike Gilbert (AQIS, Grain Programmes, Export Manager), and his technical team, representatives from the Australian Barley Board (ABB), the Australian Wheat Board (AWB), the Australian Seed Producers’ Federation and the National Association of Testing Authorities Australia. The main aim of the meeting was to progress points raised in November 2004 when an AQIS team visited New Zealand (see Biosecurity 57, 1 February 2005).

Key discussion points included:

- ongoing grain and seed for sowing issues
- the problem – and possible solutions – for grain leakage from containers on arrival in New Zealand
- mandatory activities that occur under Australian law prior to grain export
- pre-export inspection and sampling activities provided by AQIS inspectors to meet New Zealand’s import requirements.

Some certification requirements may be removed

Under Australian law these AQIS pre-export activities occur on a mandatory basis that is actually independent of MAF’s import requirements but covers them completely. No consignment of

Australian grain can receive approval from AQIS for export before all of the mandatory activities are completed. Similarly, MAF’s import requirements ensure that certification is obtained from AQIS to confirm that sampling and inspection of vessels or containers for contaminants has been conducted. As MAF’s import requirements are comprehensively covered by Australian legislation, MAF is considering removing some of the certification requirements. After the meeting, the group toured the AgriQuality (Australia) seed testing/GM testing laboratory in Melbourne and discussed seed sampling and testing issues from an AgriQuality (Australia) perspective.

Pilot test for liners to reduce grain leakage mooted

The group also toured the Melbourne Bulk Grain Export Port (AusBulk) where a presentation on bulk grain vessel inspections was provided by AQIS. Sampling of grain during bulk vessel loading and container inspections prior to loading was also observed. The group then visited a malting facility in Melbourne where brewing malt is shipped in containers fitted with special liners to cut down on leakage. AQIS, Australian exporters and MAF are interested in reducing problems associated with containers that leak on arrival in New Zealand, and the use of liners may relegate leakage to negligible levels. The possibility of running pilot studies using container liners for the export of grain was raised by AQIS and supported by MAF. Finally, the group visited Professional Grain Services (PGS) in Laverton, Melbourne to look at container operations and export programmes for grains and pulses. Sampling of wheat trucks, contaminant analysis by PGS & SGS Australia, and loading of grain containers was observed. After travelling to Adelaide, a reduced group (ABB, AQIS Canberra, and MAF) visited the regional AQIS office where a presentation on container inspections and the course requirements for third party container inspectors were provided. A quick trip was made to Simons and Clarke Ltd (export container storage agents) to see export container operations and different container liners. Finally the group met regional managers of ABB (South Australia) to talk about import issues associated with importation of barley grain into New Zealand. This was followed by a comprehensive tour of the 645,000-tonne capacity ABB Grain Facility located at the port.

In May or June 2005, AQIS officials plan a return visit to New Zealand to observe biosecurity clearance systems for grain at major ports in the North Island. An additional TTGPIEWG meeting will be held at this same time.

For more information on import health standards for seeds and import health and operational standards for grain:


Dr Dave Nendick, Senior Adviser [Plants], Operational Standards, Pre-clearance Directorate, Biosecurity New Zealand, phone 04 474 4200, fax 04 498 9888, dave.nendick@maf.govt.nz

Rob Taylor, Senior Adviser [Plants], Import Health Standards, Pre-clearance Directorate, Biosecurity New Zealand, phone 04 474 4119, fax 04 498 9888, robert.taylor@maf.govt.nz
Sharon Tohovaka was recently appointed as Survey Team Manager in the Pre-clearance Directorate’s Border Monitoring Group. Sharon previously worked for Statistics New Zealand in the role of Survey Manager. During her time with that organisation she worked on all aspects of survey operation including the issue of questionnaires, data capture and processing, data analysis and the publication of final datasets. Sharon has recently returned to New Zealand after a period living and working in Niue where, for 15 months she operated as the Government Statistician under an NZODA project. In her new role, Sharon will lead a team of eight people undertaking pathway monitoring surveys at ports and airports. The surveys will provide information on the efficiency and effectiveness of the biosecurity system in managing risks in border pathways.

People in Biosecurity

Julia Russell joined the Pre-clearance Directorate last month as Senior Adviser, genetically modified organisms and plant containment facilities. Julia has come from the University of Canterbury where she worked as a postdoctoral researcher on the molecular ecology of forest endomycorrhizal fungi. Julia completed a PhD in plant developmental genetics at the University of Leeds and subsequently worked at the John Innes Centre, UK. She has experience of using genetically modified organisms for the study of plant development. Julia is taking over from Kathryn Hurr, who is on parental leave. In this position she will have responsibility for operational standards and containment facilities for new organisms, and the maintenance of measures to prevent the import of unapproved genetically modified organisms.

Import Health Standards

Dairy products from various countries

- Dulce de Leche from Argentina
  Last amended on 9 December 2004
- Sweetened condensed milk from Brazil
  Last amended on 21 June 2004
- Sweetened condensed milk from Indonesia
  Last amended on 9 December 2004
- Sweetened condensed milk from Vietnam
  Last amended on 10 November 2004

The change made to these IHSs since they were last amended is as follows:
- The Eligibility section and the Manufacturer’s Declaration state that Dulce de Leche and condensed milk sweetened with honey are not eligible for import under these import health standards.
- These standards are now dated 23 February 2005.

Dairy products for human consumption from Thailand

Changes made to this IHS since it was last amended include:
- Manufacturer Declaration: Japan has been added as a MAF-recognised foot and mouth disease-free country to allow dairy product produced in Thailand to contain dairy content from Japan.
- Importers’ Responsibilities: amendment to NZFSA clause
- Definitions section: update of definitions.

The standard is now dated 1 March 2005 and replaces that dated 7 April 2000.

Dogs and cats from the United Kingdom

Changes made to this IHS since it was last amended include:
- Any reference to ‘country of origin’ now specifies ‘United Kingdom’ to clarify and emphasise the minimum 6 month residency requirement in the United Kingdom for dogs and cats prior to export
- Clauses stating that all laboratory results for pre-export tests must be attached to the veterinary certification accompanying the animal have been repeated in relevant sections of the certification as well as the standard to ensure this requirement is met.

This IHS is now dated 1 March 2005 and replaces that dated 12 May 2003.
Updates

Changes made to this IHS since it was last amended include:

- Assistance dogs other than guide dogs added (e.g. hearing dogs)
- Contact details for the Verifi cation Agency for prior notifi cation of arrival of the assistance dog have been added
- De nition of assisted handler and guardian have been added
- Minor editorial and formatting.

A further minor amendment recommendation proposes changes to Section 11, Biosecurity Clearance in response to a Quality Improvement Form (QIF):

Inspectors were incorrectly directed to examine dogs on arrival for clinical signs of disease. This IHS is to be used in conjunction with the IHS for dogs from the relevant country of origin, in which Oicial Veterinarians examine dogs for clinical signs of disease before departure. This incorrect clause has therefore been deleted.

This IHS is now dated 16 March 2005 and replaces that dated 7 February 2005.

Chicken hatching eggs from Australia
Last amended on 22 July 2004

Chicken hatching eggs from Great Britain
Last amended on 16 November 2004

Chicken hatching eggs from Canada and the United States
Last amended on 22 July 2004

Specific pathogen-free chicken eggs for laboratory use from Australia
Last amended on 4 June 1999

Turkey hatching eggs from Australia, Canada and Northern Ireland
Last amended on 22 July 2004

Turkey hatching eggs from the UK
Last amended on 16 November 2004

DEFRA initiated the request for this amendment following a higher than expected number of test positives to the IDEXX ELISA when used for the fi rst time. This minor amendment proposes an addition to the clause regarding pre-export testing for avian in fl uenza specifying what protocol should be followed in the event of positive results.

“In the case of birds with test results that were positive or inconclusive, a further sample was taken and retested by an ELISA that is able to detect all 15 haemagglutinin subtypes at the Veterinary Laboratories Agency. Any birds positive to this repeat test were culled for virus isolation and found to be free of avian in fl uenza viruses.

(Delete if not applicable)"

A new clause has also been added to clarify current practice:

“All pre-export laboratory test results are attached to this certifi cation.”

These IHSs are all now dated 8 March 2005.

Importation into New Zealand of stored plant products intended for human consumption: Biosecurity New Zealand standard BNZ-NPP-HUMAN

On 9 March 2005, Biosecurity New Zealand issued the above standard, which describes the requirements for importing stored plant products for human consumption. This new IHS replaces part of a much older standard which was not widely distributed or available electronically. There are no major changes to the import requirements of the commodities listed.

The standard can be found on the MAF website at:


Import health standards for consultation

As part of the consultative process in the development of the import health standard for pig meat and pig meat products from Finland and Sweden, MAF has distributed the following draft document for public consultation and comment:

Draft IHS for pig meat and pig meat products from Finland and Sweden

This draft IHS is based on the Disease Risk Assessment: Importation into New Zealand of meat and meat products (March 1991), and current import conditions for Porcine Reproductive and Respiratory Syndrome in the current import health standards for processed and unprocessed pig meat and pig meat products. This standard will replace the import health standard for the importation of pig meat products from Sweden when it is issued.

Disease risk assessment: meat and meat products

- Risk analysis (1991)

Note: Comments should only relate to the import health requirements outlined in this draft import health standard.

Submissions on these draft documents should be forwarded to MAF by close of business on Friday 13 May 2005. Depending on the results of consultation, it is anticipated that the new requirements will be in place by June 2005. MAF encourages respondents to forward comments electronically to the email address below. However, should you wish to forward submissions in writing, please send them to the address that follows:

Wendy Long,
Biosecurity New Zealand, PO Box 2526, Wellington, New Zealand,
fax 04 474 4132,
imports@maf.govt.nz

Amendment to all canine import health standards: Babesia gibsoni

Following recommendations of the import risk analysis and the review of public submissions in October 2003, the interim risk mitigating measures for Babesia gibsoni in imported dogs have been revised.

A brief paper outlining the revised requirements is available at:


Any comments on the revised requirements can be forwarded in writing by Friday 13 May 2005 to:

Wendy Long,
Biosecurity New Zealand, PO Box 2526, Wellington, New Zealand,
fax 04 474 4132,
imports@maf.govt.nz

Pig meat and pig meat products for human consumption from South Africa

As part of the consultative process in the development of the import health standard for the importation into New Zealand of processed and unprocessed pig meat and pig meat products for human consumption from South Africa, MAF has distributed the following draft document(s) for public consultation and comment:

Draft Import Health Standard (IHS) for the importation into New Zealand of processed pig meat and pig meat products for human consumption from South Africa, dated 30 March 2005

Draft Import Health Standard (IHS) for the importation into New Zealand of unprocessed pig meat and pig meat products for human consumption from South Africa, dated 30 March 2005

The import health requirements in this draft IHS are based on the Disease Risk Assessment: Importation into New Zealand of meat and meat products (March 1991), and current import conditions for Porcine Reproductive and Respiratory Syndrome in the current import health standards for processed and unprocessed pig meat and pig meat products.

Disease risk assessment: meat and meat products
• Risk analysis (1991)

Note: Comments should only relate to the import health requirements outlined in this draft import health standard.

Submissions on these draft documents should be forwarded to MAF by close of business on Friday 13 May 2005. Depending on the results of consultation, it is anticipated that the new requirements will be in place by June 2005. MAF encourages respondents to forward comments electronically to the email address below. However, should you wish to forward submissions in writing, please send them to the address that follows:

Wendy Long,
Border Standards Team, Biosecurity New Zealand,
PO Box 2526 Wellington, New Zealand,
fax: +64 4 474 4132,
longw@maf.govt.nz

FRESH PRODUCE FROM VARIOUS COUNTRIES

• Import health standard for Citrus (Citrus spp) from the Arab Republic of Egypt. Draft released for consultation, comments due by 15 April 2005.
• Import health standard for Longans (Dimocarpus longan) from Thailand. Draft released for consultation, comments due by 15 April 2005.
• MAF Biosecurity Standards 152.02 Importation and Clearance of Fresh fruit and vegetables into New Zealand amended and issued 2 March 2005.
• Import health standard for Eggplant (Solanum melongena) from Samoa. Issued 2 March 2005.
• Import health standard for Eggplant (Solanum melongena) from Vanuatu. Issued 2 March 2005.

Revocation of import health standard

Cheese for human consumption from Cyprus, dated 22 March 2002

Cyprus is now an EU member state and cheese from Cyprus can be imported under the IHS: Heat Treated Milk and Milk Products for Human Consumption from the European Community

Import health standards: New management and funding discussion document

Following a review of the funding of biosecurity services, the funding and management of import health standards (IHSS) was identified as an area where further work was required. High demand for IHS work has led to growing pressure on MAF resources, and a backlog of IHS applications. A discussion document has been prepared to outline proposed areas for change to the system of developing import health standards, and to invite comment from stakeholders.

The proposals include a system for prioritising requests for IHSs and risk analyses for imports. Each year, MAF will collate a list of requests and prepare a draft programme of work by prioritising the list against defined risk management criteria (attached as an appendix).

Relevant industry and government stakeholders will be consulted, and then the work programme would be finalised as appropriate and recommended to the Minister for Biosecurity for approval.

It is also proposed that the Crown continues funding IHS work where it is justified from a public good perspective. However, as part of this new system, importers would potentially have the option of funding development by MAF of an IHS themselves, should it meet the relevant risk management criteria, but not justify Crown funding. MAF would need to retain control over how this IHS work was undertaken to ensure that it remained robust to domestic and international scrutiny.

After this consultation phase is complete, MAF will review the submissions and revise the proposed policy where appropriate. A recommendation on the policy will be made, followed by a final decision. The discussion document is available for public consultation, and can be viewed online at:


For a copy of the discussion document:

Wendy Long,
Border Standards Team, Biosecurity New Zealand,
PO Box 2526 Wellington, New Zealand,
phone 04 470 2781,
wendy.long@maf.govt.nz

Notices of consultation are available on the MAF website and are also sent to relevant stakeholders through departmental mailing lists.

Submissions and comments are invited until 24 June 2005.

Codes of ethical conduct – approvals, notifications and revocations since the last issue of Biosecurity

All organisations involved in the use of live animals for research, testing or teaching are required to adhere to an approved code of ethical conduct.

Codes of ethical conduct approved: Nil

Transfers of code of ethical conduct approved: Nil

Code holder name changes

• Living Cell Technologies New Zealand Ltd (formerly Diatranz NZ Ltd)

Amendments to codes of ethical conduct approved: Nil

Notifications to MAF of minor amendments to codes of ethical conduct

• University of Auckland

Notifications to MAF of arrangements to use an existing code of ethical conduct

• Hutt Hospital (to use University of Otago’s code, Wellington AEC)
• Mount Albert Bioactives Research Centre (to use University of Auckland’s code)
• Wrightson Ltd (to use Animal Health Services Centre’s code)
• Vet Resource (to use AgResearch Ltd’s code, Ruakura AEC)

Codes of ethical conduct revoked or expired or arrangements terminated

• Auckland University of Technology
• Equine Fertility Services Ltd
• Feral R & D Ltd

Approvals by the Director-General of MAF for the use of non-human hominids: Nil

Approvals by the Minister of Agriculture of research or testing in the national interest: Nil

Linda Carsons,
Senior Policy Adviser, Animal Welfare,
phone 04 470 2746, fax 04 4744196,
linda.carsons@maf.govt.nz

Draft code of welfare for cats

The National Animal Welfare Advisory Committee (NAWAC) wishes to advise that a code of welfare for cats has been drafted. The draft code was released for public consultation on 2 April 2005 and the closing date for submissions is 15 April 2005.

The draft code is available on the MAF website:

www.biosecurity.govt.nz/animal-welfare

It may also be inspected at MAF, ASB House, 101-103 The Terrace, Wellington. Any person may make submissions on the draft code in writing to NAWAC at the following address:

Animal Welfare Group,
Biosecurity New Zealand,
PO Box 2526, Wellington

Or by email to:

animalwelfare@maf.govt.nz
Biosecurity is about managing risks – protecting the New Zealand environment and economy from exotic pests and diseases. Biosecurity New Zealand devotes much of its time to ensuring that new organism records come to its attention, to follow up as appropriate. The tables below list new organisms that have become established, new hosts for existing pests and extension to distribution for existing pests. The information was collated during 05/02/2005 – 18/03/2005, and held in the Plant Pest Information Network (PPIN) database. Wherever possible, common names have been included.

### New organism records: 05/02/2005 – 18/03/2005

**PLANT KINGDOM RECORDS 05/02/2005 – 18/03/2005**

**Validated new to New Zealand reports**

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlavirus Passiflora latent virus (PLV)</td>
<td>Passiflora tarminiana (Passionfruit, passion flower)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>PLV was detected in a single vine in Auckland which has since been destroyed.</td>
</tr>
<tr>
<td>Cladosporium jacarandica (no common name)</td>
<td>Jacaranda mirrosoficia (Jacaranda)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>This recently described new to science fungus is known only from New Zealand and is associated with leaf mould.</td>
</tr>
<tr>
<td>Colpoma quercinum (No common name)</td>
<td>Quercus sp. (Flowering ash)</td>
<td>Marlborough Sounds</td>
<td>Forest Research</td>
<td></td>
</tr>
</tbody>
</table>

**New host reports**

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sclerotinia sclerotiorum (Sclerotinia rot, white mould)</td>
<td>Hydrangea macrophylla (Hydrangea)</td>
<td>Southland</td>
<td>NPPRL</td>
<td>This common fungus has a very wide host range.</td>
</tr>
<tr>
<td>Orchamoplatus citri (Australian citrus whitefly)</td>
<td>Citrus reticulata (Mandarin)</td>
<td>Northland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include New Zealand grapefruit, lemon, titoki and pohutukawa.</td>
</tr>
<tr>
<td>Cercospora api (cercospora leaf spot)</td>
<td>Jacaranda mirrosoficia (Jacaranda)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include bridal wreath, climbing fuschia, butterfly plant, red campion, goosefoot, corn marigold, annual chrysanthemum, strawberry bilo, smooth hawksbeard, kidney weed, blue static, creeping mallow, bells of Ireland, bloody dock, tobacco, marsh bedstraw, coreopsis and Deutzia.</td>
</tr>
<tr>
<td>Gibberella acuminata (fusarium root rot)</td>
<td>Trifolium resupinatum (Persian clover, reversed clover)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>This common fungus has a very wide host range.</td>
</tr>
<tr>
<td>Pseudocercospora atromarginalis (pseudocercospora leaf mould)</td>
<td>Nicandra physalodes (apple of Peru)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include Velvety nightshade.</td>
</tr>
<tr>
<td>Pestalotiopsis versicolor (pestalotiopsis)</td>
<td>Rhapsis excelsa (lady palm)</td>
<td>Northland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include kiwifruit, feijoa, passionfruit, avocado, radiata pine, Chile nut, blueberry, black currant, Kaki, grape, olive, Phoenix palm, bangalow palm, scaly Zamia, fshital palm, crane flower, yellow guava, beech, West Himalayan Fir, dragon tree and Eucalyptus sp</td>
</tr>
<tr>
<td>Phoma exigua (phoma leaf spot)</td>
<td>Osteospermum sp. (daisy)</td>
<td>Mid Canterbury</td>
<td>NPPRL</td>
<td>This common fungus has a very wide host range.</td>
</tr>
<tr>
<td>Gloeciadium vermoeseni (Pink rot of palms)</td>
<td>Washingtonia sp. (Palm)</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include Nowea forsteriana.</td>
</tr>
<tr>
<td>Armillaria novae-zealandiae (Armillaria)</td>
<td>Quercus robur (English oak, truffle oak)</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Other PPIN hosts include peach, white clover, lime, kiwifruit, banana, Eucalyptus nitens, E. delegatensis, E. fastigata, E. saligna, and E. fraxinoides.</td>
</tr>
<tr>
<td>Uraba lugens (Gum leaf skeletoniser)</td>
<td>Eucalyptus acmenoides</td>
<td>Auckland</td>
<td>Forest Research</td>
<td>Other PPIN hosts include Eucalyptus spp., apple gum, brush cherry, pohutukawa, scarlet oak, ash, pin oak, brush box, rusty gum and kanuka.</td>
</tr>
<tr>
<td>Oenoma hirta (lemon tree borer)</td>
<td>Clerodendrum trichotomum (no common name)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>This insect has a very wide host range.</td>
</tr>
<tr>
<td>Hysterographium fraxini (No common name)</td>
<td>Fraxinus ornus (Flowering ash)</td>
<td>Nelson</td>
<td>Forest Research</td>
<td>This fungus has recently been found on a number of Fraxinus species.</td>
</tr>
<tr>
<td>Navromorpha lineata (striped longhorn)</td>
<td>Catalpa bignonioides (Northern catalpa)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>Other PPIN hosts include poplar, Caucasian fir, butterfly bush, Eucalyptus spp., and radiata pine.</td>
</tr>
</tbody>
</table>
Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Orchamoplatus citri</em> (Australian citrus whitefly)</td>
<td><em>Citrus reticulata</em> (Mandarin)</td>
<td>Northland</td>
<td>NPPRL</td>
<td>Other known distributions include Auckland and Nelson.</td>
</tr>
<tr>
<td><em>Hysterographium fraxini</em> (No common name)</td>
<td><em>Fraxinus sp.</em> (Ash)</td>
<td>Wellington</td>
<td>Forest Research</td>
<td>Other known distributions include Timaru, Nelson, Wellington, and South Canterbury.</td>
</tr>
<tr>
<td></td>
<td><em>Fraxinus angustifolia</em> (Narrow-leafed ash)</td>
<td>Taranaki</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Fraxinus excelsior</em> (ash)</td>
<td>Marlborough Sounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Uromyces edwardsiae</em> (Rust fungus)</td>
<td><em>Sophora microphylla</em> (Kowhai)</td>
<td>Rangitikei</td>
<td>Forest Research</td>
<td>Other known distributions include Auckland, Gisborne, Wellington, Nelson, Marlborough, Mid Canterbury, South Canterbury, Dunedin, the Marlborough Sounds, and the Chatham Islands.</td>
</tr>
<tr>
<td><em>Sycoscapter australis</em> (fig wasp)</td>
<td><em>Ficus macrophylla</em> (Moreton Bay fig)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>Other known distributions include Auckland and Hawke’s Bay.</td>
</tr>
<tr>
<td><em>Pseudidarnes minerva</em> (wasp)</td>
<td><em>Ficus rubiginosa</em> (Port Jackson fig)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>Other known distributions include Auckland.</td>
</tr>
<tr>
<td><em>Pleistodontes imperalis</em> (wasp)</td>
<td><em>Ficus rubiginosa</em> (Port Jackson fig)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>Other known distributions include Northland, Auckland, Coromandel, Bay of Plenty and Hawke’s Bay.</td>
</tr>
<tr>
<td><em>Septoria cercidis</em> (no common name)</td>
<td><em>Cercis siliquastrum</em> (Judas tree)</td>
<td>Gisborne</td>
<td>Forest Research</td>
<td>Other known distributions include Auckland.</td>
</tr>
</tbody>
</table>

Eleanor Morrison, Technical Support Officer, Biosecurity New Zealand, ph 04 498 9801, eleanor.morrison@maf.govt.nz

ANIMAL KINGDOM RECORDS 05/02/2005 – 18/03/2005

Validated new to New Zealand reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Holaspulus tenuipes</em> (predatory mite)</td>
<td>Soil</td>
<td>Auckland</td>
<td>NPPRL</td>
<td>Specimens collected from soil around the roots of potted native grass. This species is reported from Europe, England, Mexico, Taiwan, Japan and Hawaii.</td>
</tr>
</tbody>
</table>

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suvi van Smit, Technical Support Officer, Biosecurity New Zealand, ph 04 460 8702, suvi.vansmit@maf.govt.nz

CODES OF WELFARE – Animal Welfare Act Update

The table below is a quick guide as to the status of the various codes of welfare as they are developed under the Animal Welfare Act 1999

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodeo Code</td>
<td>Came into force on 1 January 2004.</td>
</tr>
<tr>
<td>Pig Code</td>
<td>Came into force on 1 January 2005.</td>
</tr>
<tr>
<td>Layer Hen Code</td>
<td>Came into force on 1 January 2005.</td>
</tr>
<tr>
<td>Zoo Code</td>
<td>Came into force on 1 January 2005.</td>
</tr>
<tr>
<td>Circus Code</td>
<td>Came into force on 1 January 2005.</td>
</tr>
</tbody>
</table>

Work has also begun on codes of welfare for on-farm husbandry procedures (e.g. castration and dehorning), dogs, dairy cattle, and transport of animals by sea.

Wayne Ricketts, Programme Manager Animal Welfare, phone 04 474 4276, wayne.ricketts@maf.govt.nz