National Animal Identification and Tracing system launched

Web-based tool to manage pest control
Offshore container management programme
Animal welfare quality assurance
Biosecurity magazine

Biosecurity is published six-weekly by MAF Biosecurity New Zealand, with regular input from the Department of Conservation, Ministry of Health, Ministry of Fisheries and regional councils. It is of special interest to all those with a stake in the protection of New Zealand’s economic, environmental and social assets from the dangers posed by pests and diseases. Animal welfare issues are also covered. The articles in this magazine do not necessarily reflect government policy.

For enquiries about specific articles, refer to the contact listed at the end of each article.

General enquiries (e.g. circulation requests or information about MAF Biosecurity New Zealand):
Phone: 04 894 0100
Fax: 04 894 0720
Email: biosecurity@maf.govt.nz
Internet: www.biosecurity.govt.nz

Editorial enquiries:
Editor: Phil Stewart
Phone: 04 384 4688
Email: biosecurity@wordpict.co.nz
ISSN 1174 – 4618

MAF Biosecurity New Zealand fax contacts:
Policy and Risk: 04 894 0731
Animal Welfare: 04 894 0728
Border Standards: 04 894 0733
Post Border: 04 894 0736
Enforcement and Audit: 09 300 1021
Investigation and Diagnostic Centres: 04 526 5601

EDITORIAL
Securing future market access ... 3

FRONTLINE NEWS
New National Animal Identification and Tracing system approved 4
VectorNet: A tool to plan, manage and control pest control activities .. 8
Pole position for V8 pre-inspection 9
Canoe club gets serious about didymo 10
Spreading the didymo message to boaties 10
Gypsy moth levy unchanged in 2008–09 11
Win-win from offshore container management programme 12
Snake training put to good use in Tauranga 13
Critical veterinary shortage in Pacific islands 14
SPCA gets drought-related funding for farm animal welfare 15

BIOSECURITY SCIENCE
Ornamental fish focus for PhD project 15

BIOSECURITY SYSTEMS
Animal welfare quality assurance workshop 16
Committee exemplifies inclusive approach to welfare 20
Amendments clarify role of Biosecurity Act 21
Animals in transit: the journey ahead 21

BIOSECURITY INTERFACE
Better communication on welfare urged 22
Future of forest-related biosecurity surveillance 24

UPDATES
New import health standards; reissued import health standards 24
Amended import health standards: animals 25
Amended import health standards: plants 25
Draft import risk analyses for public consultation 25
Codes of ethical conduct .. 26
Codes of welfare ... 26

DIRECTORY ... 26

Cover: The National Animal Identification and Tracing system (NAIT) was launched at this month’s National Agricultural Fieldays at Mystery Creek, Hamilton. NAIT, which begins with cattle and deer, will help meet increasing demands for whole-of-life tracing of livestock.
Securing future market access through animal identification and tracing

Unlike almost all other developed nations, New Zealand is highly dependent on primary production for export income. Agriculture, horticulture and forestry, and the processes and services that are set up alongside them, contribute around 17 percent to our gross domestic product. They provide around two-thirds of our total merchandise exports, and have long been the greatest contributors to our export earnings.

In 2006/07, the export value of our livestock industries in the beef, deer and dairy sectors was almost $10.5 billion. Any major restriction in our current markets would be felt not only by individual farmers and industry sectors, but also by their associated service industries and on through to affect the country as a whole.

Both the Government and the livestock industries have been concerned for some time by the imperative of maintaining our overseas markets. International markets are becoming more discerning, with an increasing number of buyers and consumers becoming interested in the ability to trace primary produce back to individual farms. A number of countries in North and South America, Europe and the Far East, have animal identification and traceability systems underway, based on the ability to trace individual animals. Now that trading partners have the ability to choose products that offer this opportunity, it is clear that countries or suppliers that can provide whole-of-life tracing for their animal products will be preferred in future.

Aware of this global trend for other exporting countries to adopt traceability systems for their produce, the New Zealand Government and livestock industries began joint discussions four years ago on how to improve these systems in this country. An article later in this magazine outlines the result: a unique agreement in partnership, which aims to secure our future access to overseas markets through developing an animal identification and tracing system.

While New Zealand already has individual identification schemes for some livestock, it is now time to take a more systematic approach to ensure our continued recognition as world leaders in the production of top quality animal products. New Zealand has been able to trade on its disease-free status, and maintaining this position is vital, both economically and socially. To meet future requirements we will need to be able to demonstrate to our trading partners that we have effective systems to identify and trace all animals that may be affected should there be a disease outbreak, to target our response activities, and to provide evidence to back up assurances about our national status for livestock diseases. The National Animal Identification and Tracing (NAIT) project aims to address these issues, starting with cattle and deer.

The best national systems are those where the Government, producers and processors work together to meet common needs. The NAIT partners who have contributed in developing the system include representatives from the Meat Industry Association of New Zealand (Inc), the Dairy Companies Association of New Zealand, Deer Industry New Zealand, Meat & Wool NZ Ltd, DairyNZ, Federated Farmers of New Zealand (Inc), the New Zealand Food Safety Authority and the Ministry of Agriculture and Forestry.

The global trends which have led to the development of NAIT show how vital it is that individual animal identification and tracing works for the good of all participants. The partnership approach to the NAIT project has been essential to ensure that the concerns and needs of all parties are recognised and addressed. Its benefits will be seen far beyond the contribution of the individual participants. I am confident it sets a solid foundation for New Zealand’s land-based industries and rural communities to continue building the economic and social future of the country.

Douglas Birnie
Director, Policy and Risk, MAF Biosecurity New Zealand
New National Animal Identification and Tracing system approved

At the National Fieldays on 12 June, the Minister for Biosecurity and representatives of the dairy and livestock industries announced their joint agreement to fund and develop a new national animal identification and tracing (NAIT) system, beginning with cattle and deer.
The announcement marks a significant next step in a project that began in 2004, when a working group was put together to look at the domestic and international trends in animal identification and tracing, and propose a way forward for New Zealand’s systems. While other countries that have developed such systems have had their needs defined for them following a biosecurity failure (e.g., bovine spongiform encephalopathy (BSE) in the United Kingdom, European Union (EU) and Canada; foot and mouth disease in South America and the EU), New Zealand has been uniquely privileged in being able to plan ahead and take the initiative in developing a system that meets a wide range of needs for livestock owners, processors and government.

The New Zealand approach of involving both the Crown and industry is very important and reflects learning from international experience, particularly from Australia and Canada, where key success factors have been a strong regulatory basis with industry support.

An implementation plan giving full details of the NAIT proposal for public consultation was also released at the Fieldays. This document, National Animal Identification and Tracing – Enhancing New Zealand’s Animal Identification and Tracing Systems, and further information, including answers to commonly asked questions, can be downloaded from the website, www.nait.org.nz

What NAIT will do

The main purpose of the new NAIT system is to meet the increasing demands for whole-of-life tracing of livestock, from farm of birth, through the production chain and eventually on to slaughter. It will start with cattle and deer, but have the ability to be extended to other livestock species over time. With the new data to be collected on individual animals, New Zealand livestock owners, processors and government will be able to know the animals’ current location, movement history off-farm and other key attributes associated with livestock, enabling better on-farm management.

NAIT is, above all, an electronic data collection and recording system, based on the use of radio frequency identification (RFID) ear tags. It will also involve the systematic collection of other information currently held in a range of databases on the ownership and management of rural properties. This will include people in charge of properties and animals, and rural properties and their locations. The information can then be drawn down for clearly defined needs (e.g., biosecurity and market access requirements) when animals are registered, moved, traded and slaughtered.

NAIT will begin with the individual identification of cattle and deer, which already have mandatory herd-based identification for bovine tuberculosis. It is intended to make compliance with NAIT a legal requirement for cattle by 2011, but the timeline for deer may be different. There is a technical issue with effectively reading the tags in the special circumstances of deer herds, and the compliance date for deer will depend on how that is resolved.

Why NAIT is needed

Pressures to improve animal identification and tracing systems have arisen from three main sources.

Improving consumer confidence – there is growing interest internationally from importing countries, corporations and consumers for better information about the source of food products. There is a risk that New Zealand might fall behind competitors if it does not respond to such market demands.

Improving disease management – New Zealand’s animal-based industries are a key element in our economic success. Cattle (including dairy), deer and sheep account for $13 billion in exports every year. The risk of new exotic disease incursions is increasing as the volume of trade and tourists increase, together with a wider range of their sources. Overseas countries are also demanding better proof of freedom from disease, using evidence from surveillance programmes, and livestock industries also need to better manage existing diseases that affect productivity and market access.

Improving food traceability – The need to provide increasingly sophisticated evidence of trace back to source, if a food safety risk or animal disease risk has been identified. If systems are found to be inadequate, access to overseas markets could be restricted. This has happened recently with the EU’s banning of the import of Brazilian beef in January 2008. This followed an inspection of Brazilian farms, and the EU’s finding that their requirement to have animal health and traceability systems that meet EU conditions on farm registration, animal identification and movement controls had not been met. Brazil is the world’s biggest beef exporter, sending abroad almost 2.3 million tons per year, a third of global exports, worth almost US$4.5 billion.

Information needs

Data needs were defined by each of the NAIT partner organisations: Dairy Companies Association of New Zealand, DairyNZ, Deer Industry New Zealand, Federated Farmers, Meat and Wool New Zealand, Meat Industry Association and government agencies. Each organisation outlined its own requirements, and those important to all were included within the design of the system:

- ownership, location and access to spatial data on all relevant properties and enterprises across the country
- information about the people in charge of such properties, enterprises and livestock
- identification data on individual animals and their key attributes (e.g., whether beef or dairy cattle)
- data on movements to other properties around the country
- any other data requirements on biosecurity or food safety that might be regulated for.

Besides the obvious biosecurity and market access issues the information will provide, this sort of information can be put to other uses. These include responses to disasters, such as floods or drought, and other emergency services. With the ability to quickly access information on farms and owners, it will be easier for agencies to contact people to assess what assistance they need. The information can also be used for industry-good activities such as industry-managed pest management schemes or for use in accountability processes to levy payers.

Requirements under NAIT

Farmers and producers

People with properties or premises associated with cattle and deer will have a number of new requirements. They will need to register their properties on NAIT in order to interact with the system and buy and use RFID ear tags. The NAIT tag will be introduced as a secondary device under existing animal identification schemes until the NAIT system is built and the legislation put in place to give it effect.

continued on page 6
The information will be captured when the tag is purchased and held until confirmation that the tag has been applied to the animal. Cattle and deer will need to be tagged and recorded by farmers or staff at first contact after birth, and no later than three months of age. One important exemption will be available for bobby calves going direct to slaughter, which do not present any serious biosecurity risk.

Farmers will also need to record the movements of their cattle and deer off the property, and their arrival at the end of the journey. Transit points and other stopovers may also need to be recorded if the animals being moved mingle with other animals during the course of the movement. For full trace-back over the whole life of the animal, it is necessary to be able to track every
other animal a target animal may have been in contact with over its lifespan.

Other responsibilities under the NAIT system are to assist in reconciliation issues, such as replacement and recording of lost tags, declaring animals that die on the property or go missing, and ensuring that any data discrepancies are resolved and corrected.

It is expected that third party service providers will begin operating to provide some of these services to NAIT on behalf of farmers. Farmers and producers will not be required to buy RFID tag readers, but no doubt some will want to make this purchase, either individually or across several properties, for convenience or to meet on-farm management needs.

Meat processors
All premises that receive live or dead animals recorded on NAIT for processing will have a range of similar roles. They will need to register their premises to interact with the NAIT database, and use RFID tag readers within them to individually identify all the animals received and send that information to NAIT together with date of slaughter or processing.

Meat processors will be expected to have and use RFID readers, and to establish the interfaces necessary between their own electronic systems and NAIT, in order to be able to interact with NAIT.

Saleyards
Like meat processors, saleyards are expected to register their premises to interact with the NAIT database, and use RFID tag readers within them. They will need to record individual animal identifications, and send that information on along with the source of the animals.

Unlike the processors, saleyards will also need to record on NAIT the destination of animals sold from their premises.

Data access and privacy
NAIT will be established with a governing body that represents both the Crown and industry participants. This governing body will set the rules controlling access to the data and will develop policies and processes to make sure that access is consistent with the purposes for which NAIT was set up and otherwise complies with the Privacy Act 1993.

The Crown and other organisations participating in NAIT will have rights and obligations that will be set out in legislation for access to the data for approved purposes. Another principle, which will be important with so many people contributing data to the system, is that individuals can voluntarily provide other people with access to their own personal information. For instance, a potential purchaser of livestock may be interested in the movement history or other attributes of the animals, and the owner could volunteer that information if he or she chose to by giving a potential purchaser access to that information.

Costs
The NAIT partner organisations have been contributing to the project since 2006, both financially and with staff time. From 1 July 2008, as announced at Fieldays, formal funding arrangements for building the system will begin. The Crown will fund all of the capital expenditure in building the NAIT system, and 35 percent of the ongoing operational expenditure. The remaining 65 percent of NAIT operational expenditure will be met by the industries through a mix of direct funding and proposed levy payments. The costs of the system are outlined below.

Farmers who want to begin using RFID tags on their livestock will be able to start using them as secondary tags from mid-2008. The additional cost of a tag for each animal is estimated at $2.80 under the current two-tag scheme. This assumes that the NAIT tag takes the place of the existing secondary tag within official identification schemes for cattle and deer already approved under the Biosecurity Act 1993 – AsureQuality’s scheme, the Animal Health Board’s DMIS scheme, and the dairy industry’s MINDA scheme. Other schemes, such as those for imported animals, may be integrated with NAIT once the first roll-out of the NAIT system is successfully completed.

The tagging costs are expected to reduce by 2013 with the proposed transition to a single NAIT tag scheme, and as the costs of RFID tag production continue to fall.

Meat processors and saleyards will be required to introduce RFID readers into their premises. Panel readers, which automatically record the RFID tags as animals move past them, cost about $7,500. Handheld wand readers suitable for light use on farms are available at around $300, and fixed wand readers for automatic recording similar to plate readers cost around $2,000 each.

There will be associated software costs for premises to link readers to computer systems, which are estimated to cost around $20,000 per saleyard and $30,000 per processor.

Making the transition to NAIT
The planned key dates in making the transition to NAIT are as follows.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March to August 2008</td>
<td>Prototype to test NAIT data transfers between farms, saleyards and processing plants</td>
</tr>
<tr>
<td>June to September 2008</td>
<td>NAIT implementation document released for public consultation</td>
</tr>
<tr>
<td>July 2008</td>
<td>Farmers can start tagging using NAIT tags under current schemes</td>
</tr>
<tr>
<td>July to December 2008</td>
<td>Final NAIT design signed off</td>
</tr>
<tr>
<td>Early 2009</td>
<td>Contracts to build NAIT go out</td>
</tr>
<tr>
<td>March 2009</td>
<td>Policy and legislative requirements finalised</td>
</tr>
<tr>
<td>Late 2009 to 2010</td>
<td>People can start registering animals and moving animals under NAIT</td>
</tr>
<tr>
<td>Late 2010</td>
<td>Regulatory requirements for NAIT confirmed</td>
</tr>
<tr>
<td>Mid-2011</td>
<td>Regulations for cattle and deer to be registered on NAIT and meet NAIT requirements in place</td>
</tr>
</tbody>
</table>

Detailed information
An implementation plan with further detail on the NAIT proposal and a list of answers to commonly asked questions is available from the NAIT website:

www.nait.org.nz

Submissions
Submissions from all interested parties on the NAIT proposal are welcomed. In particular, the NAIT parties are interested in views on:

- information to be held on NAIT
- purposes for which the data on NAIT will be used
- fine-tuning the requirements of NAIT participants, including how the movement of animals is recorded
- how we ensure NAIT information is kept up to date and accurate
- how industry funding contributions are made
- further work needed to ensure a smooth transition from current systems
- any other aspect of design before we proceed to build NAIT
- who is likely to use NAIT before it becomes mandated in 2011
- views on requirements for deer under NAIT.

The closing date for submissions on the NAIT system:
Friday 1 August 2008

Please address written submissions to:
Susan Keenan, MAF Biosecurity New Zealand, PO Box 2526, Wellington
VectorNet:
A tool to plan, manage and control pest control activities

Many activities scattered over a large area, budgets to juggle, tons of details linking theory to practice, inaccuracy of data to deal with, losing details in translation between people: these are familiar challenges for managers of the bovine Tb vector control programme. Their job is to design and implement the wild animal control programme to reduce the risk of Tb infection spreading from the Tb vectors to cattle and deer herds.

The Animal Health Board’s (AHB’s) challenge has been to plan more effectively, reduce administration and duplication, gather and store data so it can be used to make better decisions and reduce the risks from changing how things are done.

The result? VectorNet: a web-based information system that underpins all aspects of Tb vector control. This system is now the central tool for our $50 million per year vector control programme, covering nine million hectares of New Zealand.

Vector control is a vital component of the National Pest Management Strategy to reduce the number of cattle and deer herds with bovine Tb.

Contact with infected wildlife vectors is the prevailing cause of domestic cattle and deer herd infection. The main Tb vector is the possum, with infected populations covering about 40 percent of the country. VectorNet enables the vector control programme to be optimised, supporting the whole annual vector programme cycle, shown in Figure 1.

In particular, VectorNet enables us to:
- set regional and national targets to achieve the Tb control objectives
- plan, prioritise and approve individual operations, creating a vector control programme to achieve the targets
- manage the tendering of control and monitoring activities to contractors
• manage the successfully tendered contracts
• capture activity progress and results
• adjust the programme based on analysis of operational results and disease incidents.

Good quality, timely data is vital for making sound decisions on the most effective and efficient way to reduce bovine Tb. Accordingly, in VectorNet every piece of data is related to a geographical area. To achieve this, a hierarchy of geographic layers underpins the 6,000 to 7,000 vector control activities in the annual vector programme (see Figure 2).

Significant benefits are gained by making this link between geospatial and textual data, including:
• increased visibility of decisions
• improved data consistency, accuracy and timeliness
• improved access to information.

Consistent, even control over possum habitat areas is critical to break the Tb cycle in possum populations. Previously, this relied heavily on local knowledge of bush areas and maps. VectorNet provides a consistent national approach to identify possum habitat using satellite images of land cover and aerial photos as a base. It enables users to capture local knowledge, improve the quality of information and share it with others.

VectorNet also links directly to work in the field. Possum density in a given area is critical data. VectorNet generates the exact locations where traplines should be placed in a given area, according to a statistically based method to measure possum density. These locations are downloaded from VectorNet to handheld devices used in the field. Monitoring results are recorded into the handheld device and the results uploaded into VectorNet.

The basic building blocks of VectorNet can be applied to other pest control programmes, where issues identified for the bovine Tb vector control programme often arise. By identifying the common elements, and the detail of the actual control work, VectorNet can be set up to run one or several pest programmes and ensure the data is consistent, accurate and manageable. This is a great advantage for managers, researchers, analysts and pest control experts alike.

Alison Barrett, Manager Business Strategy and Systems, Animal Health Board,
barretta@ahb.org.nz

Pole position for V8 pre-inspection

Two MAF Biosecurity New Zealand (MAFBNZ) Quarantine Inspectors had an exclusive preview of a fleet of Australian-based V8 race cars recently, but it was all in the line of duty.

Greg Williams (Hamilton) and Rachel Barker (Auckland) were giving the cars and associated equipment a thorough pre-inspection before they were air freighted to New Zealand for the Hamilton V8 races, held in April. Greg inspected the cars coming from Brisbane while Rachel dealt with a shipment from Melbourne.

Apart from some cleaning for organic material that was required, and a small amount of contamination of equipment with grass, there were no quarantine worries for the MAFBNZ staff. There was a security breach of a different kind, however, when it was discovered MAF seals had been tampered with prior to shipment from Avalon Airfield, near Melbourne.

During the unpacking of the freight in New Zealand, it was discovered that driver Greg Murphy’s helmet was missing. A hurried trip was made to his Melbourne base to uplift a replacement before the races started, but it was all to no avail – Murphy failed to finish the race, retiring after seven laps. There was one small consolation for the driver, however: the helmet thief was later apprehended by Victorian police.
Canoe club gets serious about didymo

In a proactive move, members of Hawke’s Bay Canoe Club are strictly sticking to the Check, Clean, Dry procedure in order to protect the rivers they love from the invasive aquatic pest, didymo.

Though based far from known didymo infestations, the club has decided to do its bit to prevent any risk of spread, after members observed a demonstration on didymo risks and proper cleaning methods during a kayaking trip to the Tongariro River.

“These guys were saying, ‘this is what we want all kayakers to be doing in the North Island,’ explains Hawke’s Bay Canoe Club member Bernie Kelly.

“They demonstrated how to clean boats out using the simplest methods available.

“We decided that as a club we should be proactive about this. The rivers we kayak on are important to us – we’d hate for them to be infected with didymo.”

The club purchased buckets, sponges and chemicals to store in the club trailer.

“Whenever we go on a club trip, at the end of the trip before we put the boats back on the trailer, we fill those buckets up, we sponge the boats down, we rinse them out.”

“We feel as though we’re doing the right thing there. Sometimes, we can see other guys paddling independently and they just biff their boats on the car and away they go.

Hopefully we’re showing by example what they should be doing.”

Bernie is not aware of other North Island regional clubs taking similar measures, and thinks didymo prevention practices may not yet be common amongst other North Island-based kayakers.

On a recent club trip to the Waikato River, he and other club members witnessed some didymo apathy firsthand. “One guy who was paddling by himself needed a lift with his boat. We were all cleaning out our boats, and offered to take his boat to his car.

“He said, ‘that’d be good – don’t worry about cleaning it out.’ We cleaned it out for him anyway.

“Even though people are aware there’s a message, they can somehow think it doesn’t really mean them.”

Bernie says kayakers, with their very transportable gear, need to take more responsibility for helping prevent the spread of didymo.

“Fishermen have had the finger pointed at them, but I think kayakers are equally responsible. The New Zealand Recreational Canoeing Association is pretty good at putting the message out there in their newsletters – they’re aware.

“If we promote awareness of didymo through high profile, respected kayakers, then the younger guys will listen.

“Most kayakers are pretty responsible kind of people. They would take this on.”

New Zealand Recreational Canoeing Association:
 ■ http://rivers.org.nz/article/Didymo

Hawke’s Bay Canoe Club:
 ■ http://homepages.paradise.net.nz/epotto/

Spreading the didymo message to boaties

MAF Biosecurity New Zealand (MAFBNZ) attended New Zealand’s biggest boat show in Auckland last month to help raise awareness of didymo.
Gypsy moth levy unchanged in 2008–09

This year (2008–09), the gypsy moth levy placed on all shipping containers and used cars imported into New Zealand will again remain unchanged at 65 cents per unit.

The levy covers the annual cost of the gypsy moth surveillance programme, and tendering the work has ensured that the programme maintains a high level of efficiency. As a result, the levy has continued unchanged since its introduction.

Gypsy moth (Lymantria dispar) is a major threat to the New Zealand environment, and has been the target of specialist surveillance since 1992, when ships from Eastern Russia were identified as being capable of transporting Asian gypsy moth egg masses to our shores. Asian gypsy moth could enter New Zealand from any temperate East Asian country, including China, Japan, the Russian Federation and South Korea.

A recent review of the available evidence suggests that the pathway most likely to result in entry and establishment of Asian gypsy moth is used vehicles (specifically from Japan). While current measures do reduce the likelihood of entry and establishment, they do not reduce it to a negligible level. The next most likely pathway is sea containers.

In 2005, the surveillance programme was revamped to increase the probability of detecting any stray moths. The most significant improvement was targeting high-risk pathways for gypsy moth introduction into New Zealand. For example, transitional facilities process the approximately 500,000 imported sea containers arriving in New Zealand annually. Along with the main population centres, they represent some of the most likely areas for an incursion. A grid-based trapping system is now used to allow a large area to be covered with a relatively small number of traps.

The programme is based on the placement nationwide of around 1,600 pheromone-baited traps. These are checked fortnightly from November through to April. Any suspect moth captured in a trap is sent to Scion entomologists for identification. All moths forwarded to Scion this season were already known from New Zealand; no gypsy moths were found.

In 2003, a gypsy moth was trapped in Hamilton as part of the surveillance programme. This detection resulted in a successful eradication programme, highlighting the value of the early warning trapping system.

Paul Stevens, Senior Adviser (Plants Surveillance), Post Border Directorate, MAF Biosecurity New Zealand,
paul.stevens@maf.govt.nz

With more than 30,000 people attending the 2008 Hutchwilco Boat Show, it was an excellent opportunity for MAFBNZ to promote the didymo Check, Clean, Dry message to the public – most of whom were passionate boaters and fishermen. We built on the Check, Clean, Dry message to emphasise that these practices not only slow the spread of didymo, but other aquatic pests as well.

With a good display of ‘fake didymo’, cleaning guides, and spray bottles, many people came to the MAFBNZ booth with questions and comments – and occasionally to congratulate us on our efforts.

While most attendees were aware of didymo, and some had seen didymo on a South Island boating or fishing trip, we were able to educate those who hadn’t. As usual, people who had seen what didymo can do were especially concerned and wanted to know what they could do to help. Those unsure of what didymo was were surprised to learn about it and what they could do to prevent its spread.

This was a very successful event. The crowd was very receptive to our ideas and comments and we gained positive feedback. We hope to attend again next year.

www.biosecurity.govt.nz/didymo
Win-win from offshore container management programme

A programme to better manage the risk from unwanted pests, such as ants and snails, arriving in New Zealand on containers is paying dividends all round.

In 2006, MAF Biosecurity New Zealand (MAFBNZ) implemented a cooperative offshore management programme (EQ2) with Swire Shipping to manage contaminants and pests, such as ants and giant African snails, in or on containers. The system, designed to be “equivalent to quarantine” (EQ) activities conducted by MAFBNZ in New Zealand, involved cleaning and treating containers in the country of origin to remove contaminants and exclude pests.

EQ2 trials were run in Honiara, Solomon Islands and in Lae and Port Moresby in Papua New Guinea in 2006 (see Biosecurity 70:4, September 2006). Trial threshold levels for general contaminants and ants were set at 5 percent and 0.16 percent respectively. The trials were successful, with levels dropping below the thresholds.

MAFBNZ and Swire reached an agreement whereby assessment audits would occur every six months. In addition, if container compliance from the ports was maintained, then port approval would be granted. This would result in a progressive reduction in inspection rates for containers arriving in New Zealand.

Honiara and Port Moresby met EQ2 requirements in December 2006, and inspection levels for containers from both ports were reduced from 100 percent to 50 percent in April 2007. A second audit in June 2007 showed compliance was maintained, and inspection levels were reduced to 20 percent.

Lae also met EQ2 requirements (with agreed implementation of corrective actions) in April 2007. Containers from Lae finally met full EQ2 compliance in November 2007 and inspection rates were reduced from 100 percent to 50 percent.

All ports met full EQ2 compliance and inspection levels following a MAFBNZ second audit in December 2007. Inspection rates were reduced to 10 percent for Honiara and Port Moresby.

These ports can now be regarded as among the best in the world at managing biosecurity risk in or on containers. This claim has been borne out by the significant reduction in ant incursions and marked reductions in associated methyl bromide fumigations in New Zealand.

Continual monitoring of containers arriving in New Zealand (including the beginning of 2008) from all of the EQ2 ports has shown a very high level of compliance and a continual reduction in volume and incidence of contaminants and pests. Since EQ2 began, ant infestation has dropped by 98.5 percent and giant African snails, another significant pest, have not been detected on system containers.

The EQ2 system has led to:
- reduced biosecurity contaminant and pest levels in New Zealand
- MAFBNZ inspection actions reduced by 850 hours per annum, freeing staff for other vital work
- improved MAFBNZ/importer relations
- significant cost reductions for importers and faster container clearance in New Zealand
- less congestion in New Zealand ports as containers move off-port faster
- an increase in Pacific Island export trade and greater regional employment.

MAFBNZ has established the expanded system (EQ3) as another cooperative relationship with a shipping company consortium. The companies involved are Pacific Direct Line, Pacific Forum Line, Polynesian Shipping, Reef Shipping and Sofrana Unilines. MAFBNZ and shipping companies will work towards further reducing biosecurity risk and importer compliance costs by introducing the system to ports in American Samoa, Western Samoa, Tonga and Vanuatu during 2008.

MAFBNZ auditors and consortium representatives conducted EQ3 scoping trips (pre-set up) to American Samoa and Western Samoa in February 2008 and Tonga in April 2008. A trip to Vanuatu was made in June 2008.

[Dave Nendick, Biosecurity Standards Group, Border Standards, MAF Biosecurity New Zealand, dave.nendick@maf.govt.nz]
Snake training put to good use in Tauranga

A serpent stowaway discovered recently at the Port of Tauranga gave one MAF Biosecurity New Zealand (MAFBNZ) Quarantine Inspector a chance to put his snake-handling skills into practice.

The unwanted visitor – a Pacific ground boa (Candoia carinata paulsoni) – was found in a crevice on the underside of a shipping container, transported empty from Port Vila, Efate, Vanuatu on the merchant vessel Sofrana Survive.

MAFBNZ Quarantine Inspectors were called after the sighting at a container repair and storage facility on 1 May.

“At first, we thought it had been squashed by the container,” says Alan Kirkpatrick, team leader for MAFBNZ Quarantine Inspectors at the Port of Tauranga.

“But once Tim gave it a quick poke with his snake catching hook it started to wriggle.”

Trained in snake capture and equipped with his snake-catcher’s tool bag, MAFBNZ Quarantine Inspector Tim Coley was ready to deal with the reptilian incursion.

“It was just a matter of holding the catch bag underneath and flicking it in there, basically,” says Tim.

Utilising skills learnt during a snake-catcher’s training course in Australia, which he has attended twice, Tim was able to quickly and safely capture the snake to be euthanased.

“You wouldn’t want to just jump in there without knowing what you’re doing – you definitely wouldn’t want to grab it with your hand like they do on TV – that’s one thing we’re told not to do,” says Tim.

The snake catcher’s course, run by Living With Wildlife in Adelaide, South Australia, has been attended biennially by Quarantine Inspectors from around New Zealand in recent years (see Biosecurity 78:2, September 2007).

“We’re now going to make it every year – because we’ve got nothing to practise on here,” says Tim.

The euthanased snake was sent to Motueka-based herpetological experts, Whitaker Consultants Ltd, for identification and to ensure it was harbouring no ectoparasites. They identified the snake as a Candoia carinata paulsoni, a subspecies of the non-venomous Pacific ground boa, a young male, 55cm long and not dangerous to humans.

The Pacific ground boa is found in eastern parts of Indonesia, Papua New Guinea and the Solomon Islands. The Sofrana Survive began its journey in New Zealand. Before arriving in Vanuatu, the ship called at ports in Queensland, Papua New Guinea and the Solomon Islands, then returned to Tauranga direct from Vanuatu. According to Whitaker Consultants’ report, it is most likely the snake came aboard the vessel at one of the ports visited in Papua New Guinea or the Solomon Islands, then moved between the containers on board.

“It could have just been stuck in a container somewhere, having a nice little sleep, and it got picked up by a forklift then chucked onto a ship and next thing you know it’s in New Zealand. It’s pretty much just a hitchhiker,” says Alan.

“Sometimes you get lizards, sometimes you get ants, and this time it just happened to be a snake.”

Exotic disease and pest hotline: 0800 809 966
Critical veterinary shortage in Pacific islands

Half of the nations in the Pacific Island Countries and Territories (PICTs) have no veterinarians and numbers over the whole region are in decline.

At an April 29 meeting in Sydney organised and funded by the International Fund for Animal Welfare (IFAW), in cooperation with the Australian Veterinary Association (AVA) and the Commonwealth Veterinary Association (CVA), the issue of the current inadequate and declining veterinary capacity in the PICTs, with the associated negative impact on biosecurity, food security and animal welfare, was discussed. Participants included representatives of IFAW, universities, veterinary associations, government departments, the OIE and aid agencies.

There is no veterinary training available within the PICTs. Of the few students training at the University of Queensland and Massey University, none will graduate before 2011, and few of those who have trained on scholarships to Australasian universities in the past are still practising in the region. Expatriate volunteers, whether private individuals or sponsored, offer real potential to assist, but are an occasional presence at best.

Frontline animal health services tend to be provided by paravets, many trained by the Animal Health and Production section of the Secretariat of the Pacific Communities (SPC). The Para-veterinary (PARAVET) Training Project, run by Massey-trained veterinarian Ken Cokanasiga, was established to develop skills in animal health and production at the sub-professional level to compensate for the veterinary shortage. However, there are limits to the skills of paravets and it is essential that they be under the direction of adequate numbers of qualified veterinarians if areas of biosecurity, animal disease control, livestock production, genetics, reproduction, aquaculture, food security and food safety, veterinary public health, disaster management, dog management and control and veterinary pet care are to be adequately addressed.

The meeting established the necessity of forecasting long-term needs in terms of numbers and skill levels for veterinarians and paravets as an initial step in resolving the crisis. Long-term solutions are needed, which will encourage the commitment of trained locals to the region. The establishment of a veterinary school, not necessarily at a level that allows registration within Australia or New Zealand, is considered a possibility and more likely to encourage veterinarians to stay locally. Veterinarians trained in other developing countries are more likely to practise in the region. Options discussed included course links to tertiary institutions in Australia and New Zealand for both veterinarians and paravets, and the employment of veterinarians from developing countries.

One of the problems that needs to be addressed on a local level is lifting the profile and importance of the livestock sector in the region. Government support is necessary for the development of key policy initiatives within the sector, including the training of veterinarians, in pursuit of greater self-reliance in livestock production and enhanced food security. It is also important for PICTs to be engaged in the evolving global animal welfare process, not least because of their reliance on tourism.

A taskforce, led by Dr Robin Yarrow, Fiji resident and CVA Immediate Past President, was formed to drive the issue, with the initial brief of developing a manpower and needs analysis. This can be used to lobby PICTs governments for support, an essential first step in any resolution, and will be presented at the SPC Heads of Agriculture and Forestry (HOAFS) and Ministers of Agriculture and Forestry meetings, to be held in Samoa in September. An additional meeting of interested parties is planned at the CVA conference in Samoa in November to discuss a further plan of action.

Dr Virginia Williams attended the Pacific Veterinary Capacity Roundtable, representing the New Zealand Veterinary Association (NZVA) and MAF Biosecurity New Zealand. Her costs were met by IFAW.

Dr Virginia Williams, Animal Welfare Coordinator, NZVA, vwilliams@xtra.co.nz

Participants in the Pacific Veterinary Capacity Roundtable, from left: Dr Bruce Twentyman, AVA, Dr Bill Pryor, CVA, Dr Michelle Morters, IFAW, Dr Raana Asgar, Biosecurity Australia, Mr Matt Lees, Austraining, Dr Virginia Williams, NZVA and MAF Biosecurity New Zealand, Ms Erica Martin, IFAW, Ms Marguerite Young, IFAW, Dr Mike Nunn, Biosecurity Australia, OIE, Dr Mark Lawrie, AVA, Dr Pa’olelei Luteru, University of the South Pacific, Associate Professor Joanne Meers, University of Queensland, Mr Mark Sayers, AusAID, Dr Robin Yarrow, CVA.
Ornamental fish focus for PhD project

Lincoln University’s Bio-Protection Centre and MAF Biosecurity New Zealand (MAFBNZ) are searching for a candidate to undertake a MAFBNZ-funded PhD study into the development of DNA barcoding to identify exotic ornamental fish that pose a biosecurity risk to New Zealand.

Dr Colin Johnston of the MAF Investigation and Diagnostic Centre at Wallaceville has an advisory role in the PhD study. Colin says high-risk ornamental fish fall into two categories: those known to carry diseases of concern, and those likely to establish well in New Zealand and pose an environmental pest risk.

“Carp in Australia is a good example of something that’s got out and taken over waterways and changed the environment,” Colin says. “This PhD study will provide another brick in the wall in New Zealand’s biosecurity system.

“It’s adding to our knowledge, it’s giving us more molecular tools. Part of the problem is identification of these fish species, especially when they’re very small.

“By giving us molecular tools, we can take a DNA sample from a fish due to be imported, and be able to tell if it’s one that we’re really worried about. Then we can stop the shipment, or we can know we need to screen them for certain diseases. At the minute, we rely very much on visual identification.”

The candidate will undertake generation and analysis of fish DNA barcode sequences, and those of other appropriate genes, and investigate diagnostic platforms.

The PhD is to be taken up at Lincoln University, and will be principally supervised by Drs Kelly Armstrong and Shelley Ball of Lincoln University’s Bio-Protection Centre. Advisers will include Drs Colin Johnston and Suzanne Keeling of the MAFBNZ Investigation and Diagnostic Centre in Wallaceville.

“Whoever does this will get an insight into the world of DNA barcoding and fingerprinting for biosecurity purposes, which is increasingly used for all of these environmental pests,” says Colin.

“It’s part of a global movement to DNA barcode many different species.”

Dr Karen Armstrong, Programme Leader Molecular Diagnostics (Biosecurity), Bio-Protection Research Centre – Lincoln University, phone 03 325 3838 extn 8390, armstron@lincoln.ac.nz.

http://www.bioprotection.lincoln.ac.nz

SPCA gets drought-related funding for farm animal welfare

A one-off government grant of $300,000 is to be made available to the SPCA to help with animal welfare issues following this year’s drought. The grant was announced by the Minister of Agriculture, Hon Jim Anderton during his keynote speech when he opened the Royal New Zealand SPCA 75th anniversary ‘Jubilee Conference’ in Auckland on Saturday 3 May.

Mr Anderton cited the heavy load that drought conditions were placing on MAF enforcement officers and the vital role that SPCA inspectors play in ensuring compliance with animal welfare standards.

“One impact of the drought that hasn’t had as much attention has been the effect on animals,” he said.

“Stressed farm conditions can put pressure on animal welfare. At the very least it puts a higher priority on us to get out into the community and support farms to maintain a high standard of care for their animals. The SPCA has a leading role in this.”

“The SPCA does not normally receive government funding but relies instead on the generosity of hundreds of thousands of caring New Zealanders to keep going,” says Royal New Zealand SPCA National Chief Executive, Robyn Kippenberger. “However, there is increasing pressure on our inspectors in rural areas and we felt the need to seek some relief. The grant is an acknowledgement of the important role our inspectors are already playing.”

There are around 100 SPCA animal welfare inspectors, many of whom are volunteers. Last year they received and investigated some 11,000 complaints about animal mistreatment, and laid nearly 200 charges against 84 defendants. The value to the Government of the SPCA’s animal welfare enforcement is estimated at $5 million a year.

Over the coming weeks, SPCA and MAF will meet to determine how best the money can be utilised.
Animal welfare quality assurance workshop:

NAWAC to focus on outcome-based standards and animal welfare indicators

Consumers and the New Zealand public increasingly seek assurance that the welfare standards for our livestock and poultry required by the Animal Welfare Act, codes of animal welfare and marketplace requirements are actually being met. Many of these people do not have first-hand experience of farming and rely on others to provide that assurance.

In August 2007, the National Animal Welfare Advisory Committee (NAWAC) held an internal ‘big picture’ discussion on ‘key indicators for assessing animal welfare’. As part of this discussion, Dr Lindsay Matthews gave a presentation on the European Welfare Quality Project. Key points from his presentation included:

- Animal welfare indicators need to be simple, objective and assessable, and preferably directed towards reducing the need for enforcement by prosecution.
- Even with outcome-based standards, it could be difficult for producers to interpret definitions to know when to act; that information should be available.
- Features of appropriate measures include their validity (relevance to welfare); the relevance of legal requirements; reliability; feasibility of use; predictivity and farming relevance; historical recording.
- There is an emerging trend towards ‘positive welfarism’.

NAWAC concluded that a possible response to these issues was to develop a ‘New Zealand Inc’ position (alignment of government and industry thinking) on how to move forward. This should take into account that New Zealand’s farming systems require New Zealand solutions; these might not match those of other countries, but could be demonstrated to provide equivalent welfare outcomes.

Many farming organisations are exploring ways of providing assurances on welfare standards. Key issues in the development of assurance programmes include how welfare can be measured or assessed in an objective, cost-effective way, how welfare standards can be integrated with other quality system requirements and how compliance with standards can be demonstrated.

NAWAC and the Animal Welfare Directorate of MAF Biosecurity New Zealand (MAFBNZ) considered it was timely to ask industry organisations to share this experience, and decided to sponsor a workshop, the purpose of which was to:

- receive an up-to-date briefing on initiatives by researchers and industry organisations
- obtain a briefing on what is happening in the rest of the world and how that might impact on us
- determine if we understand what assurances consumers and the public want
- consider whether there is a basis for developing a national strategy to address how assurance can be given
- develop a consensus on the respective roles of government, industry organisations and marketers of agricultural products in providing assurances to their publics.

NAWAC’s objectives

NAWAC sponsored the workshop in order to:

- obtain an understanding of where codes of welfare fit in an overall welfare assurance strategy
- seek endorsement of NAWAC’s approach in writing code of welfare minimum standards as statements of welfare outcomes to be achieved
- identify the key indicators of the welfare status of farmed species and/or the research needed to develop them
- examine mechanisms for determining compliance with code of welfare minimum standards and the consequences of non-compliance.

Workshop programme

The workshop comprised:

- snapshot presentations to give an overview of what is happening in New Zealand and elsewhere
- break-out workshop groups that were asked to discuss key questions surrounding welfare assurance
- a plenary session to consolidate workshop conclusions and consider the need for an over-arching strategy.

Figure 1: Five domains of potential animal welfare compromise
Definitions of animal welfare

There are numerous definitions of animal welfare, but no universally accepted view. Many of the differences of view can be explained by differences of weightings that are placed on the biological functioning of animals, an animal’s emotional state as it copes with and adapts to its environment and the opportunity to express natural behaviours. The World Animal Health Organisation (OIE) has described animal welfare thus:

“Animal welfare is a complex multi-faceted public policy issue that includes important scientific, ethical, economic and political dimensions. Because of its growing importance in society, animal welfare must be addressed in a scientifically credible manner.”

While this is a description rather than a definition, it helps explain why there is no unanimity on a definition.

In his presentation, Professor David Mellor posited that getting agreement on a definition of animal welfare was not needed to make progress. He described the five domains of animal welfare (Figure 1). While it may be difficult to measure the mental state of an animal, it is reasonable to assume that if the other four domains are appropriately managed, an acceptable welfare state can be attained. Of course, there is debate about what ‘acceptable’ means, and whether ‘acceptable’ is good enough. At least, this assumption offers a basis from which to take practical steps to achieve good welfare outcomes, while continuing research to extend our understanding of how animals are affected both positively and negatively by farming systems and practices and how we might measure their emotional reactions to those systems and practices. In its development of codes of welfare, NAWAC follows this pragmatic approach.

Sector assurance programmes

For all industry representatives at the workshop, animal welfare assurances were an important component of their overall quality assurance (QA) programmes. These programmes incorporate both regulatory/market access and customer-driven components. At this time, animal welfare assurance requirements are largely driven by consumers or, by proxy, retailers. New Zealand’s trade policy position is that animal welfare should not be a market access issue and is opposed to including animal welfare considerations in WTO agreements. Nonetheless, a partnership between government and the farming industries in maintaining an international profile of concern for animal welfare is an important demonstration that we are a civilised society, and the adoption of what can be seen as world best practice in animal-friendly farming is critical to the positioning of our products. In this partnership, government is seen as the standard-setter and enforcer and industry as the implementer of programmes to demonstrate that standards are met. There was no support for the notion of national QA programmes mandated by government.

In the dairy, pig and poultry industries, the QA programmes are largely industry based, whereas in the sheep, beef cattle and deer industries, programmes run by meat processing companies and wool marketers have largely replaced or supplanted industry-based programmes. The meat industry QA programmes are seen by the meat processors as points of differentiation, whereas producers would prefer a single industry-based programme that gives them greater flexibility in making their own marketing decisions. The shift from a strongly developed deer industry programme to company programmes is particularly notable.

Where codes of welfare are in place, the minimum standards underpin the QA programmes. Where they are still being developed, the content of minimum standards has been anticipated and incorporated in the QA programmes.

Overall, the picture that emerged was one of active development of QA programmes, innovative ways of advising members what the welfare standards are, the introduction of self-audit and third party audits of compliance with standards, and the commissioning of research to deal with specific welfare issues and identify indicators of welfare status. At this time, the focus of the programmes tends to be largely internal and directed to getting understanding and uptake among farmers. Comparatively little effort is going into explaining to consumers what is being done or achieved or using the results of the programmes as a positive marketing tool.

The RNZSPCA accreditation programmes for barn and free-range eggs and free-range pork present an interesting contrast. They are based on a distinctive ethical position which is used as a point of differentiation in the marketplace and is branded and actively promoted. The welfare standards associated with the programmes are subject to compliance audit which is necessary to maintain accreditation. Whether the welfare of the animals in the programmes is significantly better than conventional production systems as is claimed goes to the heart of the debate over the definition of animal welfare.

International trends
The workshop noted that concern for animal welfare now occupies a much higher profile in societal attitudes and in the decisions that consumers make about buying choices than in the past. This heightened awareness is due in part to increasingly effective lobbying by activists and campaigns promoted by celebrities. Surveys of consumer attitudes (e.g., Eurobarometer, Oklahoma State University USA survey) have demonstrated a high level of awareness of animal welfare among those surveyed, although not necessarily an understanding of what constitutes good or bad welfare. The surveys also provided evidence that consumers consider animal welfare when they make purchase choices. What is less clear is their willingness to pay more for ‘animal-friendly’ products.

No similar surveys have been undertaken in New Zealand, but a UMR survey of attitudes to the impact of dairying on the environment and animal welfare showed that about half of those surveyed were concerned about the impacts in both areas. Animal welfare labelling to assist consumers make informed choices and backed by programmes to measure animal welfare performance is now a matter for discussion in many countries. In Europe, the thinking is moving towards a mandated system supporting consumer labelling. The EU Action Plan (2006-2010) proposes to upgrade existing minimum standards for animal protection and welfare and introduce standardised animal welfare indicators that allow the hierarchy of welfare standards applied (from minimum to higher) to be classified. On this basis, labelling will be explored in a systematic manner. The action plan is supported by a large research programme (discussed below). Whether and to what extent the mandated programme will supplant existing trade-based labelling and assurance programmes remains to be seen.

In the United States, welfare labelling with supporting assurance programmes remains the province of humane societies and food retailers. Welfare legislation is largely at a state level with minimal federal involvement. Consumers’ views are strongly influenced by activist campaigns and retailer programmes which they believe are more credible than official assurances. Indeed, the credibility of official assurances has been eroded by some well-publicised failures.

The Australian Animal Welfare Strategy provides the umbrella for the development of national industry standards for the principal livestock sectors and the integration of the standards into industry QA programmes. Animal welfare is treated as a quality issue.

New Zealand attitudes

The New Zealand industries accept the growing demand for assurance from consumers that production animals in New Zealand have a good standard of welfare, and that industries are proactive in their development of the means to provide such assurances. For exported products, these programmes support the New Zealand ‘clean green’ image and allow them to give the assurances required by their customers.

There is a clear preference for assurance to remain the responsibility of the industries backed by government as the standard setter. Being able to share experience and learn from one another was seen as a benefit but there was no support for a more centrally managed approach to assurance programmes.

Research and development

Lindsay Matthews summarised research and development needs in the following schema:

Fundamental research to establish stakeholder acceptable/adoptable indicators and thresholds requires:

- novel measurement tools
- development of scales, thresholds, weightings for biological functions and animal perceptions.

These can be applied to develop practical indicators and farming practices:

- husbandry practices
- evidence for welfare standards
- best practice guidelines
- benchmarking
- audit capability.

AgResearch and Dairy NZ have a close association with the European Welfare Quality Project (Lindsay Matthews is a member of the Scientific Board), a €17 million project that is designed to roll out welfare management tools for the EU. In addition, it is expected that Dairy NZ will fund R&D on the development of a more accurate ‘clean green’ image, the development of animal welfare indicators, and the establishment of methodologies for on-farm monitoring of animal welfare.
million programme involving 44 institutes and universities in 13 European countries and four Latin American countries. This research programme is a key element in the European Action Plan.

In addition to the established research programmes, the New Zealand industry organisations are putting substantial effort into development of their QA programmes incorporating what is already known. Codes of welfare are key elements in this development. A question that will need to be addressed in these developments is whether the minimum standards are perceived to be baseline standards that should be exceeded. In other words, industries may be expected to strive for standards higher than a baseline level and demonstrate they are aiming for positive welfare outcomes, not merely avoiding negative outcomes.

Outcome-based standards

As far as possible, NAWAC writes minimum standards as animal-oriented welfare outcomes to be achieved rather than input-oriented facilities or systems standards. The objective we are pursuing for future standards can be summarised in the following ‘formula’:

Outcome-focused welfare minimum standard + measurable/assessable indicator(s) = auditable welfare

NAWAC sees the benefits of this approach as:

- From a regulatory point of view, standards that focus on the animal and its minimum required welfare outcomes offer greater utility and are likely to be more long-lived than prescriptive facilities-based standards that become outmoded by new developments.
- Animal owners can use their own expertise, experience, available technology and judgement to meet the standard.
- The standards can be more readily understood and accepted by those who must abide by them and by the public.
- The standards and their associated indicators can be effective tools for those who have to ensure compliance with them or enforce them.

Some input standards are unavoidable where a self-evident, non-negotiable welfare outcome is being sought. In most cases, however, input guidelines can be included in the code of welfare in support of the outcome-based minimum standards or recommended best practice, but do not need to be part of them.

Compliance and enforcement

A ‘back of an envelope’ calculation based on animal welfare cases reported to the NZFSA Verification Agency and MAF’s Enforcement Group estimated that about 2.5% of 30,000 commercial farms had an animal welfare ‘event’ in 2006. About one quarter of these were referred for consideration for prosecution under the offence provisions of the Animal Welfare Act. The relatively small number of farms that have a welfare event place large demands on the time and resources of MAF’s Enforcement Group. There are no means of knowing what proportion of the 97.5% of farms where an incident was not recorded meet the requirements of codes of welfare.

NAWAC respects the desire of farming industry organisations to develop and administer QA programmes that incorporate animal welfare standards and agrees that industry self-regulation is likely to be more acceptable to farmers than centrally managed or imposed programmes. NAWAC is also pleased with the workshop conclusion that NAWAC, the MAF Enforcement Group and Animal Welfare Act-appointed inspectors should have access to the results of audits of compliance with industry QA programmes. This conclusion is in keeping with the concept of a partnership between government as the standard settler and enforcer and industry as the implementer of QA programmes.

There was insufficient time at the workshop to develop the details of how NAWAC or inspectors might access the results of industry QA programmes without compromising the integrity of the programmes or appearing as ‘big brother’. The administrators of industry programmes will need to take the initiative of instigating regulatory action whether through imposing penalties available to them (e.g., payments withheld) or by involving an inspector.

NAWAC needs access to the results of the QA programmes to evaluate:

- the relevance and effectiveness of codes of welfare
- the enforceability of minimum standards
- the appropriateness of welfare indicators
- industry or market developments which should lead to review of standards such as code provisions.

Conclusions

NAWAC is pleased with the level of support for this workshop and the active participation of those who attended. We see this as a good first step. We will give priority to the development of codes of welfare which include outcome-based minimum standards and associated indicators. We will monitor the evolution of industry QA programmes and will support their development to the extent we are able. We will continue to work with industry organisations to align codes of welfare with their QA objectives. We welcome feedback on any matter related to the welfare of production animals at any time.

Peter O’Hara, Chair, NAWAC, NAWAC@maf.govt.nz
Committee exemplifies inclusive approach to welfare

The Animal Behaviour and Welfare Consultative Committee (ABWCC) is a forum for the exchange of information between New Zealand animal welfare researchers, animal industry sectors, government departments, professional organisations and funders on animal behaviour and welfare and related issues. This forum facilitates interaction between the New Zealand science community and industries, as well as the many other groups and organisations with an interest in animal welfare – thus preventing isolation with regard to animal welfare and behaviour issues.

The committee was first established in 1990 as a consultative committee to the Animal Behaviour and Welfare Research Centre (ABWRC) at the Ruakura Agricultural Research Centre. In 1995, the ABWCC took on the additional role of advisory committee to the Chair in Animal Welfare Science at Massey University. Later in 1995, a review of the ABWCC’s activities resulted in new terms of reference, a widening of membership, secretarial support from the ABWRC and independent chairmanship provided by the New Zealand Veterinary Association (NZVA). In recent years, the NZVA has also taken over the provision of secretarial services to the committee.

As well as sharing information, ABWCC members aim to identify strategically significant animal welfare issues relevant to New Zealand in the various industry sectors, as well as to suggest areas of research that could assist with the assessment and resolution of such issues. In addition, they offer advice and make recommendations on funding for research into animal behaviour and welfare.

The committee promotes a scientific approach to animal welfare issues and provides a forum that proactively links that approach to international and national trade issues and public perceptions. International trends and research in animal welfare are also highlighted. It also aims to encourage and promote the widespread dissemination and transfer of the results of research on animal welfare to scientific, industry and public groups.

In the 1990s, the ABWCC played an influential role in the development of new animal welfare legislation in New Zealand. In 1997, members decided that, for the sake of trade opportunities and for animal welfare itself, they would push for progress on changes to the Animal Protection Act 1960 that had been stalled since 1990. The committee’s membership by this time included Federated Farmers and the RNZSPCA as well as the NZVA and all the animal-based producer boards. They jointly signed a letter to all MPs, alerting them to the situation; this resulted in many promises of support. The then-opposition MP, Hon Pete Hodgson, took up the challenge of introducing a private member’s bill whose drafting was paid for by the ABWCC. Despite strong support from all parties for the bill, the government of the day decided to introduce its own Animal Welfare Bill. Continued pressure from the ABWCC resulted in the present legislation being introduced into parliament in 1998, eventually passing into law at the end of 1999.

With membership now numbering over 40, including the National Animal Welfare Advisory Committee, the National Animal Ethics Advisory Committee and the Australia and New Zealand Council for the Care of Animals in Research and Teaching, the committee meets twice yearly, most recently in April, when Hon Jim Anderton, Minister of Agriculture, highlighted the need for New Zealand to lead internationally in animal welfare. He emphasised the important role of the cooperative approach exemplified by the committee in ensuring “that we have the best research available, that as many people as possible are aware of it, and that informed decisions can be made to ensure we stay at the top of our game”.

Dr Virginia Williams, Chair, ABWCC, vwilliams@xtra.co.nz

Touch, Pause, Engage at NETS2008

Registrations are now open for the New Zealand Biosecurity Institute’s National Education and Training Seminar (NETS) 2008, being held in Hamilton from 23 to 25 July – three days of presentations, workshops, fieldtrips and networking opportunities that you won’t want to miss.

NETS2008 highlights include:
- keynote speakers, among them Dr Rachel MacFadyen from Australia’s Cooperative Research Centre and Dr Mick Clout from the International Global Invasive Species Programme
- New Zealand biosecurity practitioners highlighting current issues and solutions in talks and workshops
- local biosecurity and biodiversity fieldtrips showing that Waikato is definitely where it’s happening.

For the full NETS2008 programme and registration forms, check out:
Amendments clarify role of Biosecurity Act

In April 2008, Parliament passed the Biosecurity Amendment Act (No 2) 2008 and the Hazardous Substances and New Organisms Amendment Act (HSNO Act) 2008. The amendments were required to resolve problems with the relationship between the Biosecurity Act and the HSNO Act concerning the importation of new organisms.

Why the amendments were needed

The amendments were prepared in response to a December 2007 Court of Appeal decision which held that an approval under the HSNO Act is required for known new organisms that might be incidentally introduced through imported products.

The HSNO Act prohibits the importation and release of new organisms, unless an approval has been obtained from the Environmental Risk Management Authority (ERMA). When the HSNO Act was developed, it was intended that this prohibition would apply only to the deliberate importation and release of new organisms and that risks from new organisms that might be incidentally brought into New Zealand with imported goods would continue to be managed under the Biosecurity Act.

The wording in the legislation, however, did not make any distinction between the deliberate importation of new organisms and the incidental importation of new organisms. This resulted in an overlap between the Biosecurity Act and the HSNO Act. The full implications of the overlap, as interpreted by the Court of Appeal, made it necessary to change the legislation.

Summary of the amendments

The key change made in the amendments is to confirm that the Biosecurity Act, rather than the HSNO Act, is the correct statute for making decisions on incidentally imported new organisms.

The amendments also include provisions to ensure that the Biosecurity Act import health standard process is not used as a ‘back door’ for deliberately introducing new organisms. Any incidentally imported new organism remains a new organism under the HSNO Act, and the definition of ‘develop’ in the Act has been expanded to prohibit incidentally imported new organisms from being isolated and used without an approval from ERMA. The requirement for an approval excludes biosecurity activities in an incursion response.

In response to submissions on the Bill, the Primary Production Select Committee added a new section, 22A, to the Biosecurity Act, to allow for an independent review to be conducted as part of the import health standard development process. The purpose of the review is to advise the Director-General of MAF on whether, in developing an import health standard, MAF has had sufficient regard to the scientific evidence about which a person consulted on the draft standard has raised a significant concern.

The Director-General of MAF must set out the process by which independent review panels are to be established by notice in the Gazette. MAF has recently consulted interested parties on this process, which must be notified in the Gazette by 1 July 2008.

As a separate process, disputed scientific evidence relating to the import health standard for Australian honey will be independently reviewed. This import health standard was the subject of the litigation that lead to the December 2007 Court of Appeal decision.

Dr Julia Wrathall, Head of Farm Animals at RSPCA United Kingdom, presented this year’s keynote speech on how the European Union is dealing with the long-distance transport of livestock across its many borders. Other speakers discussed both road and sea transport of animals as well as transport of farmed fish. Recent research was presented on the physiological impact of transport on animals and the factors that influence our understanding of what is an ‘appropriate’ transport process.

The importance of developing nationally consistent standards for animal welfare and the incorporation of animal welfare in industry quality assurance schemes was also discussed.

Animals in transit: The journey ahead

The 2008 RSPCA Australia Scientific Seminar examined the impact of transport on the welfare of animals and how to minimise and manage this impact. Each year, around one billion animals (including over 15 million farmed fish) are transported within Australia either for slaughter, export or further finishing. Transport is generally accepted to be stressful to animals.

For more information, including the proceedings, visit:

Information gathered at this seminar will be valuable to the National Animal Welfare Advisory Committee, which is currently developing a code of welfare for transport of animals within New Zealand.

Dr Cheryl O’Connor, Programme Manager Animal Welfare, phone 04 894 0371, cheryl.o'connor@maf.govt.nz

Better communication on welfare urged

The need for industry to provide consumers with factual information on the animal production system and the importance the industry placed on animal welfare were key topics addressed at the Seventh Annual Animal Agriculture Alliance (AAA) Stakeholders Summit held in Arlington, Virginia on 8–9 April.

Jason Frost, Technical Adviser at the New Zealand Embassy, attended the summit to listen to views, in particular on animal welfare, and how industry could build linkages throughout the food chain to address them.

The AAA, formed in 2000, represents the views of a broad range of the US food industry sector including producer groups, processors/packers, animal health companies and food retail operators. Its mission is to provide an informed voice to communicate the industry message on a range of issues, in particular, on industry animal welfare practices.

The summit was again moderated by prominent agriculture talk-back host Mike Adams with segments broadcast live over the AgriTalk radio talk-back show, reaching audiences throughout the US heartland. Former House Agriculture sub-Committee Chair, Charles Stenholm was the keynote speaker. He spoke of the unintended consequences some legislation was having on the animal agriculture industry. In particular, he examined how the recent ban on horse slaughter had effectively removed options for horse owners no longer willing or able to keep their horse(s). An unintended consequence of the slaughter ban, Stenholm noted, was some 60,000 unwanted horses in the United States. Another result was a dramatic increase in the export of live horses for slaughter to both Mexico and Canada, with much of the meat produced then re-exported to the United States for use as animal feed (e.g., in 2005). Stenholm said the agriculture industry should communicate better to the public and consumers what they were doing to enhance animal welfare. Stenholm also discussed the animal welfare implications of the Farm Bill and believed that animal welfare issues would have a greater influence on future farm bills.

Current Congressman Steve King (Republican – Iowa) also spoke, remarking that he was strongly opposed to the legislation banning horse slaughter and considered the result had turned an asset into a liability. He said that, in terms of animal welfare, no one cared more about the welfare of livestock than those producing them – a point often overlooked by the consumer.

The development of the OIE Animal Welfare Guidelines was also discussed at the summit, with general agreement that there was opportunity in the guidelines to help enhance the trade in meat and meat products. It was felt that the guidelines would also assist efforts to assure consumers that animal products were both safe and produced to a high animal welfare standard.

The importance of US participation in the development of these standards was also seen as crucial and it was therefore important that industry views were communicated to the United States Department of Agriculture. The AAA is the liaison between the US industry and Government on OIE animal welfare matters and a key industry objective is to ensure their AAA members are updated on new OIE animal welfare initiatives.

In a live broadcast from the symposium on AgriTalk radio, Kay Johnson-Smith, Executive Vice President of the AAA, discussed the need for industry to improve its image in the wake of recent negative publicity. She emphasised the requirement for better communication to consumers about the importance industry places on animal husbandry and animal wellbeing. Both aspects, she noted, are critical components of a successful animal production operation.

The issue of consumer anxiety over where their food came from was discussed by Kevin Murphy of Food-Chain Communications. He believed it vital that industry undertake a dialogue with customers and suppliers on animal welfare issues.

There was also a realisation that meeting the needs of increasing global demand for food could only be done in a manner acceptable to both the producer and consumer. To achieve this, all sectors of the food chain had to participate in informing consumers of the social, environmental and economic benefits of the products the sectors provided.

- www.animalagalliance.org
- Jason Frost, Technical Adviser, Ministry of Foreign Affairs and Trade, Jason.Frost@mfat.govt.nz

Congressman Steve King: legislation banning horse slaughter turns an asset into a liability.
Photo: Animal Agriculture Alliance.
Sabine Scholl has joined MAF Biosecurity New Zealand (MAFBNZ) Post Border Directorate’s Systems Design Team as a project manager. She holds a degree in Public Administration, Business and Public Law and various Microsoft qualifications. Sabine came to New Zealand in April 2007 after managing her IT consulting company in Germany for over 10 years. Her experience covers project and programme management in the IT/ICT industry, lecturing at universities, software development and IT engineering. She is a certified member of the International Webmasters Association and the Worldwide MCT Community. Before joining MAFBNZ, Sabine worked for Gen-i/Telecom in Wellington.

Corinna Bennett has joined the Pest Management Group in MAFBNZ’s Post Border Directorate as an adviser, focusing on coordination of the long-term management programme for didymo. She was previously employed at the New Zealand Water & Wastes Association, where she worked on water-related policy and coordinated interest groups and projects related to the water industry, both at a national and regional level. Corinna graduated from Massey University in 2006 with a BA/BSc in Philosophy and Zoology.

Ana Tutone Tualau has joined the Analysis and Profiling Group in MAFBNZ’s Border Standards Directorate as a data analyst. Ana’s role involves the design and analysis of pathway monitoring surveys. She holds an MSc and PhD in Molecular Biology from the University of Auckland. For her PhD, Ana studied the aluminium inhibition effect on the uptake of magnesium by plants grown in acid soil. Her research led to the cloning of a plant magnesium transport gene, AtMGT10. This discovery has been used as a gateway for targeting plant magnesium deficiency problems in acid soil at a molecular level. Her MSc research involved optimising conditions for the transformation of Cymbidium orchids. This project continued with her Research Fellow in creating virus-resistant Cymbidium orchids.

Cath Kingston has joined the Analysis and Profiling Group in MAFBNZ’s Border Standards Directorate as a data analyst. Cath spent the years prior to joining MAFBNZ combining study with family, working towards an MSc in Statistics at the University of Auckland. Cath has long had an interest in the natural history of New Zealand, in particular its flora. Cath will be dealing with border statistics, trend analysis and data enquiries.

David Pulford joined the Biosecurity Investigation and Diagnostic Centre (IDC) at Wallaceville in April 2008 as a virology scientist. David has previously worked at AgResearch and ESR, gaining experience in diverse components of New Zealand agricultural research including meat science, food safety and environmental virology. Prior to that, his career in the United Kingdom was largely in virus vaccine development with positions at the University of Bristol and the Institute for Animal Health, Compton Laboratory, from where he achieved a PhD. He also worked for seven years as a virology research scientist for the Defence Science and Technologies Laboratories (Porton Down) specialising in poxvirus vaccines and detection technologies. David will provide expert scientific advice across MAF Biosecurity New Zealand (MAFBNZ), most specifically in virus diagnostic testing. He will also be carrying out scientific projects to complement MAFBNZ capability development.

Thérèse Oliver has joined the entomology team in the Plant Health and Environment Laboratory at IDC Tamaki as a senior technician in entomology to help develop the imaging and remote diagnostic systems. She has a BSc in Environmental Science and is studying towards her MSc in Biosecurity. Thérèse has worked for MAF since 2001, when she joined the Investigation and Diagnostic Centre’s information management team.
Future of forest-related biosecurity surveillance:
Where chickens may roost

At a recent forest biosecurity workshop Michael Brooks, the Executive Director of the Poultry Industry Association of New Zealand (PIANZ), gave a presentation on biosecurity in the poultry industry. While chickens appear to have nothing in common with trees, both industries have recognised biosecurity as a major issue and have made significant investments in biosecurity surveillance.

The workshop, the seventh in an annual series jointly convened by MAF Biosecurity New Zealand (MAFBNZ) and the New Zealand Forest Owners’ Association (NZFOA), was held over two days in March at the Scion campus in Rotorua. The workshop series challenges the status quo in three areas:
- MAFBNZ’s approach to forest biosecurity
- the forest industry’s approach to forest health biosecurity
- New Zealand’s approach to, and priorities for, forest health research.

On the first day, the 60 or so forest industry, government and research representatives reviewed the latest forest health and biosecurity research. The second day started with presentations on the current state of biosecurity surveillance.

One of the highlights of the presentations was a history of forest health surveillance in New Zealand given by Lindsay Bulman, Group Leader, Forest Biosecurity and Protection at diagnostics provider Scion. Dedicated forest surveillance started in New Zealand in 1956 and has been carried out continuously ever since.

The workshop culminated with an interactive session on what needed to be done to improve the current situation. While the current surveillance is leading the world (Biosecurity 81:6) there is recognition that things could still be better.

As a result of the workshop, goals were set to improve coordination between MAFBNZ and the forest industry, improve the efficiency of the current surveillance programmes and to improve national biosecurity surveillance of New Zealand’s exotic and native forests.

Some of these goals are already being progressed. For example:
- changes are being made to the NZFOA forest health surveillance programme
- a biosecurity monitoring and awareness-building programme is being developed for owners of small forests and large shelterbelts (Biosecurity 83:12)
- extensions are being made to the high-risk site surveillance programme to widen its protection of native forests.

New import health standards

Zoo crocodilia from Australia

Zoo crocodilia hatching eggs from Australia

Issue date: 21 April 2008

These new import health standards have been developed and list the requirements for the importation of zoo crocodilia and zoo crocodilia hatching eggs from Australia into registered zoos in New Zealand. These standards are based on Import Risk Analysis: Crocodilia and eggs of crocodilia from Australia.

www.biosecurity.govt.nz/ihzs.zocranic.aus
www.biosecurity.govt.nz/ihzs.zocrelic.aus

Specified processed freshwater fish for human consumption from specified countries

Issue date: 21 April 2008

This is a new import health standard for frozen, skinless, boneless fish fillets (or mince derived from fillets) of tilapia (Oreochromis spp.) for human consumption from Brazil and the People’s Republic of China. This standard is based on Import Risk Analysis: Frozen, skinless and boneless fillet meat of Oreochromis spp. from China and Brazil.

www.biosecurity.govt.nz/ihzs.fsfilic.spe

Animal Imports, Biosecurity New Zealand, PO Box 2526, Wellington, phone 04 894 0459, fax 04 894 0662, animalimports@maf.govt.nz

Fresh Durio zibethinus (Durian) fruit from Thailand for human consumption

This standard is based on the risk assessment for fresh durian fruit from Thailand. To view the standard:

Plant Imports, MAF Biosecurity New Zealand, PO Box 2526, Wellington, fax 04 894 0662, plantimports@maf.govt.nz

Reissued import health standards

Caviar for human consumption

An ambiguous statement in the import health standard Fiscavic.all under section 8 has been brought to light. This statement has been replaced by one that is easier to read and understand.

The standard is dated 19 May 2008 and replaces that dated 4 February 2005. To view the standard:

www.biosecurity.govt.nz/imports/animals/standards/fiscavic.all.htm

Marine fisheries products for human consumption

- Section 7.2 of the standard references a zoosanitary certificate in Part D but there is no Part D. Section 7.2 has therefore been deleted.
- A clause has been added to section 6.3 as a note that fish eggs are not included in the scope of this standard.
UPDATES

- A cooking time and temperature has been added to clause 6.5.
The standard is dated 19 May 2008 and replaces that dated 19 November 2007. To view the standard:

- www.biosecurity.govt.nz/imports/animals/standards/fismaric.all.htm

Specified foods for human consumption
The standard was amended after non-conformances highlighted problems with some of the risk mitigation measures implemented in last year’s review.
- The import requirements for retorted animal products have been clarified.
- A clause has been added to mitigate risk from mooncakes.
- A section has been added giving a reference for importers as to the equivalent option for retorting.
The standard is dated 16 May 2008 and replaces that dated 1 December 2006. To view the standard:

Horses from Australia
The standard has been reissued for horses from Australia and mitigation measures are in place for equine influenza (EI). These measures are based on the Import Risk Analysis: Horses and horse semen, 20 January 2000 and the Terrestrial Code. They are also consistent with the additional EI measures included in other import health standards for horses (United States, European Union and Canada) as a result of the EI outbreak in Australia.
Representatives of equine interests and the Australian Government were consulted throughout the development of the standard. The draft import health standard underwent public consultation and the review of submissions document is available on the MAF website.
The standard is dated 14 April 2008 and replaces that dated 3 October 2006. To view the standard:

- www.biosecurity.govt.nz/imports/animals/standards/horaniic.usa.htm

Amended import health standard: animals
Bovine semen from the European Union
Bovine embryos from the European Union
A foot and mouth disease (FMD) outbreak in the United Kingdom was reported on 3 August 2007. To manage the risks from this outbreak, any product imported under these standards needed to have been produced, processed and stored in accordance with Commission Decision(s) promulgated by committee procedures established under Article 89 of Council Directive 2003/85/EC. For this specific outbreak, Commission Decision 2007/554/EC was put in place.
Following this outbreak, the import health standards have been amended to allow for imports of semen and embryos to resume whilst preventing imports of semen and embryos that are considered a potential risk during an FMD outbreak.
Further changes include updated definitions, and a requirement has been added which states that documentation accompanying the consignment must be in English, but may be bilingual (language of exporting country/English).
These standards are now dated 22 May 2008 and replace those dated 22 December 2004. To view the standards:

Dog semen from specified countries
Dog semen requirements have been extended to include all countries from which we currently import live dogs. This provided an opportunity to streamline the conditions and implement the risk analysis opinion that semen is not known to transmit rabies infection.
Dog semen conditions are now consistent for all countries (excluding Australia) and there is one import health standard for rabies-controlled countries and rabies-free countries.
The standard is dated 26 May 2008 and replaces the import health standards for dog semen from Belgium, Denmark, Hungary, the Netherlands, Canada, United States and South Africa (27 October 2005), and dog semen from Norway, Sweden, Hawaii, United Kingdom and the Republic of Ireland (28 October 2005). The draft standard went out for public consultation and the review of submissions document can be viewed at:

Amended import health standard: plants
152.02 Importation and clearance of fresh fruit and vegetables into New Zealand
The following sections have been updated:
- Amendment record
- Summary of approved commodities Durio zibethinus (Durian) is included for Thailand
- Treatment appendices for Thailand (Appendix 3)
- Section 8.7 Approved ‘Processed’ Commodities.
To view the standard:

- Plant Imports, MAF Biosecurity New Zealand, PO Box 2526, Wellington, fax 04 894 0662, plantimports@maf.govt.nz

Draft import risk analyses for public consultation
Egg powders from all countries
A draft import risk analysis for shelf-stable spray-dried powders from all countries has been released for public consultation.
The risk analysis identifies heat-resistant variants of exotic group 1 avian adenoviruses associated with hydropoecardium syndrome (Angara disease) as a hazard in whole egg, egg yolk and egg albumen powders. Exotic avian influenza (AI) viruses are considered to be a hazard in imported egg albumen powders. The draft risk analysis presents options for sanitary measures to manage the risks associated with these hazards.

Lizards from Australia
This draft risk analysis considers the disease risks associated with the importation of certain lizard species – specified members within the Order Squamata (Class Reptilia) – from government-approved zoological collections in Australia – and eggs of these species from the same source.
The options presented to manage the risks associated with hazards in live Squamata include requirements that imported animals are held in pre-export quarantine for 90 days and specific measures based on treatment, diagnostic testing or veterinary certification.
For hazards associated with Squamata eggs, risk management options presented include a requirement that eggs originate from premises where reptiles are under veterinary supervision and specific measures are based on diagnostic testing and veterinary certification.

Submissions on draft risk analyses
These draft risk analyses are the first stage in the development of import health standards setting out the requirements to be met before these commodities may be imported and given biosecurity clearance. No decisions have yet been made. At the end of the consultation period for these draft risk analyses, all submissions will be reviewed and a document summarising the submissions and how they have been taken into account will be published and made publicly available unless the level of submissions does not warrant this (e.g., when very few or no submissions are received). As a result of submissions, the draft risk analyses will be appropriately amended and finalised. Import health standards that are subsequently developed will take account of the risk analysis options, the feedback from consultation, and any other relevant issues such as the benefits and costs of the measures.
MAF Biosecurity New Zealand welcomes submissions from all interested parties on these risk analyses and risk management options presented in these documents so that they may inform the subsequent development of import health standards.
We particularly welcome specific comment on the following questions:
1. What are your views on the risk assessment for each hazard group or organism? Are the risk assessments accurate? What changes, if any, are
Pest watch: 17/03/2008 – 02/05/2008

Biosecurity is about managing risks – protecting the New Zealand environment and economy from exotic pests and diseases. MAF Biosecurity New Zealand devotes much of its time to ensuring that new organism records come to its attention, to follow up as appropriate. The tables below list new organisms that have become established, new hosts for existing pests and extension to distribution of existing pests. The information was collated during 17/03/2008 – 02/05/2008 and held in the Plant Pest Information Network (PPIN) database. Wherever possible, common names have been included.

<table>
<thead>
<tr>
<th>ANIMAL KINGDOM RECORDS</th>
<th>17/03/2008 – 02/05/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validated new to New Zealand reports</td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Host</td>
</tr>
<tr>
<td>No new to New Zealand records during this period.</td>
<td></td>
</tr>
<tr>
<td>New host reports</td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Host</td>
</tr>
<tr>
<td>No new host records during this period.</td>
<td></td>
</tr>
<tr>
<td>Extension to distribution reports</td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Host</td>
</tr>
</tbody>
</table>

Codes of ethical conduct – approvals, notifications and revocations since the last issue of Biosecurity

All organisations involved in the use of live animals for research, testing or teaching are required to adhere to an approved code of ethical conduct.

Codes of ethical conduct approved: Nil

Transfers of codes of ethical conduct approved: Nil

Code holder name changes: Nil

Amendments to codes of ethical conduct approved: Nil

Notifications to MAF of minor amendments to codes of ethical conduct:
 - Schering-Plough Animal Health Ltd

Notifications to MAF of arrangements to use an existing code of ethical conduct: Nil

Codes of ethical conduct revoked or expired or arrangements terminated or lapsed:
 - Impian Technologies Ltd

Approvals by the Director-General of MAF for the use of non-human hominids: Nil

Approvals by the Minister of Agriculture of research or testing in the national interest: Nil

Linda Carsons, Principal Policy Adviser, Animal Welfare, phone 04 894 0370, fax 04 894 0747, linda.carsons@maf.govt.nz

Codes of welfare – update on issues, consultation, development and review since the last issue of Biosecurity

Codes of welfare issued 2008: None

Consultation on codes of welfare:
 - Commercial slaughter: recommended to Minister
 - Dairy cattle: National Animal Welfare Advisory Committee finalising code
 - Dogs: submissions being summarised
 - Sheep and beef cattle: public consultation anticipated third quarter 2008

Codes of welfare under development:
 - Transport in New Zealand
 - Temporary housing (including boarding establishments)

Codes of welfare under review:
 - Broilers

Cheryl O’Connor, Programme Manager Animal Welfare, phone 04 894 0371, fax 04 894 0747, cheryl.o’connor@maf.govt.nz

DIRECTORY

required? Do you have any relevant evidence to support suggested changes?

2. Are the risk management objectives reasonable?

3. Has the efficacy of risk management measures for each hazard group or organism been evaluated accurately?

4. Are there alternative measures or packages of measures that will achieve the risk management objective?

Submissions: essential information

If you wish to make a submission, please include the following information:

- the title of the risk analysis
- your name and title
- your organisation’s name (if applicable)
- your address and contact details (e.g., phone, fax and email)
- the number(s) of the sections you are commenting on.

Submissions are public information and may be the subject of requests under the Official Information Act 1982. If you consider that any or all of the information in your submission should be treated as confidential or commercially sensitive, please state this clearly in your submission. Any decision to withhold information under the Official Information Act may be reviewed by the Ombudsman.

We would appreciate receiving written submissions by 2 July 2008. Please address them (or any related questions) to:

Elaine Barber, MAF Biosecurity New Zealand, PO Box 2526, Wellington, phone 04 819 0504, elaine.barber@maf.govt.nz

Submissions

If you wish to make a submission, please include the following information:

- the title of the risk analysis
- your name and title
- your organisation’s name (if applicable)
- your address and contact details (e.g., phone, fax and email)
- the number(s) of the sections you are commenting on.

Submissions are public information and may be the subject of requests under the Official Information Act 1982. If you consider that any or all of the information in your submission should be treated as confidential or commercially sensitive, please state this clearly in your submission. Any decision to withhold information under the Official Information Act may be reviewed by the Ombudsman.

We would appreciate receiving written submissions by 2 July 2008. Please address them (or any related questions) to:

Elaine Barber, MAF Biosecurity New Zealand, PO Box 2526, Wellington, phone 04 819 0504, elaine.barber@maf.govt.nz

Codes of ethical conduct – approvals, notifications and revocations since the last issue of Biosecurity

All organisations involved in the use of live animals for research, testing or teaching are required to adhere to an approved code of ethical conduct.

Codes of ethical conduct approved: Nil

Transfers of codes of ethical conduct approved: Nil

Code holder name changes: Nil

Amendments to codes of ethical conduct approved: Nil

Notifications to MAF of minor amendments to codes of ethical conduct:
 - Schering-Plough Animal Health Ltd

Notifications to MAF of arrangements to use an existing code of ethical conduct: Nil

Codes of ethical conduct revoked or expired or arrangements terminated or lapsed:
 - Impian Technologies Ltd

Approvals by the Director-General of MAF for the use of non-human hominids: Nil

Approvals by the Minister of Agriculture of research or testing in the national interest: Nil

Linda Carsons, Principal Policy Adviser, Animal Welfare, phone 04 894 0370, fax 04 894 0747, linda.carsons@maf.govt.nz

Codes of welfare – update on issues, consultation, development and review since the last issue of Biosecurity

Codes of welfare issued 2008: None

Consultation on codes of welfare:
 - Commercial slaughter: recommended to Minister
 - Dairy cattle: National Animal Welfare Advisory Committee finalising code
 - Dogs: submissions being summarised
 - Sheep and beef cattle: public consultation anticipated third quarter 2008

Codes of welfare under development:
 - Transport in New Zealand
 - Temporary housing (including boarding establishments)

Codes of welfare under review:
 - Broilers

Cheryl O’Connor, Programme Manager Animal Welfare, phone 04 894 0371, fax 04 894 0747, cheryl.o’connor@maf.govt.nz
Validated new to New Zealand reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kramasamuha sibika (fungus: no common name)</td>
<td>Feijoa sellowiana (feijoa)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
<tr>
<td>Prathoda sp. (fungus: no common name)</td>
<td>Cleome hassleriana (spider flower)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
</tbody>
</table>

Comment
In 2003 this detection was identified as Alternaria longissima. Recent work indicates that New Zealand specimens are an undescribed Prathoda species.

Significant find reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaeria auritais (fungus: no common name)</td>
<td>Vitis vinifera (grape, table grape, wine grape)</td>
<td>Mid-Canterbury</td>
<td>IDC (general surveillance)</td>
</tr>
</tbody>
</table>

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudovalsa longipes (canker)</td>
<td>Quercus cerris f. laciniata (oak)</td>
<td>Mid-Canterbury</td>
<td>Scion (high-risk site survey)</td>
</tr>
<tr>
<td>Pseudococcus longispinus (longtailed mealybug)</td>
<td>Euonymus japonicus (evergreen euonymus, Japanese spindle tree)</td>
<td>Auckland</td>
<td>Scion (high-risk site survey)</td>
</tr>
<tr>
<td>Phytophthora cinnamomi (Phytophthora crown rot, Phytophthora root rot)</td>
<td>Quercus cerris (oak)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
<tr>
<td>Nectria haematococca (dry rot, root rot, stem rot)</td>
<td>Quercus cerris (oak)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
<tr>
<td>Strepsiracaces macropetana (eucalyptus leafroller)</td>
<td>Eucalyptus cosmophylla (eucalyptus, gum)</td>
<td>Hawke's Bay</td>
<td>Scion (high-risk site survey)</td>
</tr>
<tr>
<td>Strepsiracaces macroptena (eucalyptus leafroller)</td>
<td>Eucalyptus paniculata (eucalyptus, gum)</td>
<td>Hawke's Bay</td>
<td>Scion (high-risk site survey)</td>
</tr>
<tr>
<td>Prathoda sp. (fungus: no common name)</td>
<td>Coreopsis verticillata (thread leaf coreopsis)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
</tbody>
</table>

Amylostereum areolatum (Amylostereum rot)
Cedrus atlanticus (Atlas cedar)
Mid-Canterbury
IDS (general surveillance)

Icerya purchasi (cottony cushion scale)
Hymenosporum flavum (Australian frangipani, sweetshade)
Auckland
IDS (high-risk site survey)

Pseudocercospora eucalyptorum (fungus: no common name)
Eucalyptus ficifolia (eucalyptus, gum)
Auckland
IDS (general surveillance)

Coccus hesperidum (brown soft scale)
Beilischmedia tarairi (taraine)
Auckland
IDS (high-risk site survey)

Coleophoma cylindrospora (fungus: no common name)
Populus trichocarpa (western balsam poplar)
Westland
IDS (exotic forest survey)

Hemiberlesia rapax (greedy scale)
Camellia tsai (camellia)
Auckland
IDS

Oemona hirta (lemon tree borer)
Asparagus setaceus (asparagus fern)
Auckland
IDS (high-risk site survey)

Hemiberlesia rapax (greedy scale)
Ceanothus impressus (Santa Barbara ceanothus)
Hawke's Bay
IDS (high-risk site survey)

Botryosphaeria auritais (fungus: no common name)
Cytisus scoparius (English broom)
Auckland
IDS (general surveillance)

Ampagia rudis (weevil)
Corylus sp. (hazelnut)
Auckland
IDS (high-risk site survey)

Xylotoles griseus (longhorn beetle)
Erythrina cristagalli (cockspur coral tree)
Nelson
IDS (special survey)

Phytophthora cryptogea (Phytophthora root and Phytophthora root rot)
Xanthorrhoea australis (Australian grass-tree)
Auckland
IDS (general surveillance)

Phytophthora cinnamomi (Phytophthora crown rot, Phytophthora root rot)
Xanthorrhoea johnsonii (no common name)
Auckland
IDS (general surveillance)

Sirex noctilio (Sirex wood wasp)
Cedrus atlantica (Atlas cedar)
Mid-Canterbury
IDS (general surveillance)

Chondrostereum purpureum (silver leaf)
Vitis vinifera (grape)
Marlborough
IDS (general surveillance)

Galactomyces geotrichum (fungus: no common name)
Ipomoea batatas (kumara, sweet potato)
Northland
IDS (general surveillance)

Tobacco streak virus (TSV)
Dahila sp. cv. 'Kiwi Gloria' (dahila)
Waikato
IDS (general surveillance)

Saissetia coffeae (entomosporium leaf blight)
Buxus microphylla (little leaf boxwood)
Auckland
IDS (high-risk site survey)

Isotenes miserana (orange fruitborer)
Nerium oleander (oleander, rose-bay)
Auckland
IDS (high-risk site survey)

Isotenes miserana (orange fruitborer)
Acmena smithii (monkey apple, lilly-pilly)
Auckland
IDS (high-risk site survey)

Diplocarpon mespili (entomosporium leaf blight, frabrica leaf spot, frabrica scald)
Crataegus laevigata (English hawthorn)
Auckland
IDS (general surveillance)

Davidiella dianthi (fairy ring spot)
Dianthus barbatus (sweet William)
Auckland
IDS (general surveillance)

Oemona hirta (lemon tree borer)
Callistemon citrinus (cottony cushion scale)
Auckland
IDS (general surveillance)

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
<td>Host</td>
<td>Location</td>
<td>Submitted by</td>
</tr>
<tr>
<td>Kramasamuha sibika (fungus: no common name)</td>
<td>Feijoa sellowiana (feijoa)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
<tr>
<td>Prathoda sp. (fungus: no common name)</td>
<td>Cleome hassleriana (spider flower)</td>
<td>Auckland</td>
<td>IDC (general surveillance)</td>
</tr>
</tbody>
</table>

Comment: In 2003 this detection was identified as Alternaria longissima. Recent work indicates that New Zealand specimens are an undescribed Prathoda species.
Exotic disease and pest emergency hotline: 0800 809 966
Animal welfare complaint hotline: 0800 327 027
www.biosecurity.govt.nz