Green light for NAIT
Revised sea container IHS
Passenger pathway initiatives
Raoul Island Tsunami clean-up

2010: working towards greater protection for New Zealand
Biosecurity magazine

Biosecurity is published six times per year by MAF Biosecurity New Zealand. It is of special interest to all those with a stake in the protection of New Zealand’s economic, environmental and social assets from the dangers posed by pests and diseases. The articles in this magazine do not necessarily reflect government policy.

For enquiries about specific articles, refer to the contact listed at the end of each article.

General enquiries (e.g. circulation requests or information about MAF Biosecurity New Zealand):

Biosecurity Magazine
MAF Biosecurity New Zealand
PO Box 2526
Pastoral House, 25 The Terrace, Wellington, New Zealand
Phone: 0800 00 83 33
Email: biosecurity@maf.govt.nz
Internet: www.biosecurity.govt.nz
Editorial enquiries:
Phone: 04 894 0774
ISSN 1174 – 4618
Production and printing management by City Print Communications in association with Context Public Policy Communications.

CONTENTS

Editorial 3
Reviewing the Biosecurity Act 4
Government gives green light to NAIT scheme 5
Revised import health standard for sea containers 8
Passenger pathway initiatives 9
Kauri dieback programme moves into long-term management 10
“Ants in the hold” 11
Clipper Odyssey calls at Raoul Island 12
Operation tsunami clean-up 14
Detection of GM seed – specialised training for cargo inspectors 16
Award-winning research improves sheep welfare 17
Regional councils promoting improvements to pest management 18
MoU enhances MAFBNZ–IANZ co-operation 21
Updates 21–22
Directory 23

Environmental Paper Profile

Biosecurity Magazine is printed on Sumo Gloss. Sumo is an environmentally responsible paper manufactured under the environmental management system ISO 14001 using Elemental Chlorine Free (ECF) pulp sourced from sustainable, well managed forests.

Cover photo: Eketahuna, New Zealand.
Biosecurity 2010
– working towards greater protection for New Zealand

We have a big agenda for biosecurity this year, which follows on from the Government agreeing significant policy changes in 2009. A question that a number of people have asked me is “what is behind these changes?”, so I would like to take this opportunity to explain the key drivers for the work we have under way.

Biosecurity has been considered by some as a bottomless pit when it comes to resourcing, and I am often asked “do we have enough ‘biosecurity’ happening to meet the needs of New Zealand”? The Government programme alone costs about $160 million each year, with just under $30 million cost recovered from border-related activities. We could put 10 times this amount into biosecurity and still not achieve what everyone expects – 100 percent protection, which is unfeasible if we want to continue to be a prosperous trading nation and tourist destination. Biosecurity is about managing risk and providing layers of protection and response.

Rather than endlessly debating whether we have sufficient resource, what we have been doing is ensuring the resource we have can be better targeted at managing biosecurity risks so we get greater protection from within existing levels of investment.

None of the reforms is driven by a desire or need to save money. Rather, they recognise that, with increasing complexity in travel and trade, if we are to keep on delivering acceptable results we must adapt the programme and move more towards targeting our efforts to where the risks actually exist. In addition, we need to become more agile in being able to adapt rapidly and respond to the constantly changing risks we are tasked to manage.

By improved use of awareness programmes, intelligence and profiling, and smarter use of technology, we can achieve better results within the resource we have. An example is at the border, where about 96 percent of passengers arriving in New Zealand do not have undeclared biosecurity risk items with them. By using a smarter approach to target the 4 percent carrying risk items, we can achieve better biosecurity than if we continue to treat all arriving passengers as the same.

Partnerships with key groups are another principle driving the reforms. Ensuring that people are taking responsibility for the biosecurity risks they create will achieve better protection. Whether that is the nearly 50 percent of passengers who are returning New Zealanders and should know what is required of them, or industry needing empty containers to fill with primary products for export.

continued on next page
that do not want pests arriving on the containers, we believe by working with these groups we can get them to take greater responsibility in their ventures and so achieve better biosecurity outcomes.

At all levels of our work, whether with central or regional government, industry or members of the public, we must be very clear of our accountabilities, roles and responsibilities. One of the drivers for some of our work is “tidying up” confusing and complex situations. For example, the current Future of Pest Management strategy work includes clarifying the Crown’s role as a land owner and “good neighbour”.

Government–Industry Agreements have been the most controversial recent policy change, but I firmly believe they will result in greater levels of biosecurity protection. Government working alone is not able to determine the priorities for protection, and without industry being committed to biosecurity, which includes being prepared to fund a share of readiness and responses, we will not be able to agree on these priorities. Also important is agreeing on how, in a New Zealand context, we are best placed to do surveillance, readiness and response for the pests and diseases of most concern.

We have had too many examples of individuals not taking responsibility for their ventures that have resulted in new risks, and so we want to both incentivise individuals and industry to comply, as well as increase the costs and penalties for those that do not.

Finally, we would not be embarking on these changes if we did not believe they would make a real improvement in protecting New Zealand into the future. Everyone at MAF Biosecurity New Zealand is absolutely committed to achieving this.

New Zealand has a world-leading biosecurity programme, and the reviews under way will ensure we continue to be the best in the world.

I look forward to working with you during the year as we implement an exciting change to improve the way we do biosecurity.

Barry O’Neil
Deputy Director-General
MAF Biosecurity New Zealand

“...and so we achieve better biosecurity outcomes.”

continued from page 3

Reviewing the Biosecurity Act

The Biosecurity Act 1993 is scheduled for a review of its key elements this year.

It is now 17 years since the Act was put in place. In that time pressures on the biosecurity system have increased, and the capability of agencies and stakeholders involved has grown in response. It is therefore timely to ensure the Act is up to date with new systems and public expectations for biosecurity protection.

An information paper about the review is on the Biosecurity New Zealand website at: www.biosecurity.govt.nz/biosec/pol/biosecurity-act-review

Comments can be provided to the contact addresses provided in the paper.

The review will focus on the need for change in key areas, rather than reviewing all aspects of the Act. Some of the areas where legislative change might be needed are:

- border management (such as recognising the increasing use of electronic systems, new risk assessment procedures and clarifying how rules are set for imports);
- marine biosecurity;
- pest management (including clarifying roles and responsibilities, and improving mechanisms such as pest management strategies);
- biosecurity preparedness and response (such as clarifying cost-sharing arrangements with willing industry partners).

An initial round of workshops was held with stakeholders and government agencies at the end of last year. A further round of workshops is scheduled for February and March, with the aim of finalising policy proposals by May this year.
GOVERNMENT GIVES GREEN LIGHT TO NAIT SCHEME

The Government has given the go-ahead for the National Animal Identification and Tracing (NAIT) project, a livestock traceability scheme.

The aim is for the scheme to be compulsory for cattle farmers from October next year and for deer farmers a year later.

Agriculture Minister David Carter said the Government would provide funding to build and operate the new system and would draw up legislation to make it compulsory for cattle and deer farmers.

“NAIT is about future-proofing New Zealand agriculture,” Mr Carter said. “The Government is satisfied that there is a strong business case for the scheme and that its benefits far outweigh its costs.

“The livestock industries are a cornerstone of our economy. NAIT will help maintain the confidence of export markets in the safety and disease-free status of New Zealand’s livestock products. It will also boost our ability to prepare and respond to animal disease outbreaks.

“Despite concerns raised about compliance costs, the majority of farmers I have spoken to can see the necessity of having a robust and internationally credible traceability scheme.”

Mr Carter said it was important NAIT was compulsory for all cattle and deer farmers because complete records of individual animal movements were needed to ensure effective biosecurity responses.

“It is what our trading partners are increasingly demanding from us.”

Mr Carter congratulated the NAIT Governance Group on its work with farmers and industry to address concerns about costs, transition issues and the need to safeguard the privacy of information in the NAIT system.

For more information about NAIT see: www.maf.govt.nz/mafnet/animal-identification-and-tracing.htm and nait.org.nz

The background

The National Animal Identification and Tracing (NAIT) project dates back to August 2004 when industry approached the Government to work together to improve animal tracing in New Zealand.

An Animal Identification and Tracing Working Group was then established to consider domestic and international trends in animal identification and traceability, and propose a way forward to enhance New Zealand’s existing systems. While current systems are adequate, demands for animal tracing will continue to increase for market access, and to meet biosecurity and other on- and off-farm needs.

In July 2005, the Working Group distributed a report for industry consultation and from the submissions received, industry agreed in principle to the changes proposed.

In March 2006, an Animal Identification and Tracing Governance Group was established to oversee the development of the new system under the name “NAIT” (national animal identification and tracing). The NAIT Stakeholder Reference Group replaced the NAIT Governance Group in January 2010.

As at 20 January 2010, the NAIT Governance Group members were: Ian Corney, independent Chairman; Michael Spaans, DairyNZ; Andrew Fox, Meat & Wool New Zealand; Steve Murphy, Meat Industry Association; John Hartnell, Federated Farmers; Chris Mawson, New Zealand Food Safety Authority; Kevin Old, Dairy Companies Association of New Zealand; Douglas Birnie, MAF Biosecurity New Zealand; Mark O’Connor, Deer Industry New Zealand.

An industry-owned NAIT body (a limited liability company) will oversee the delivery phase over 21 months (12 months to build NAIT followed by operational testing of the system). Work will include developing the software application and core IT system, communications, stakeholder liaison and training, delivery of NAIT legislation and regulations, and setting up the governance and day-to-day management functions.
NAIT is primarily a data recording and collection system. Cattle and deer will be identified with electronic ear tags that have unique identifiers. Specific information related mainly to individual animal movements will be collected and held on a central database.

Which species will NAIT cover?
NAIT will apply only to cattle and deer at this stage. The system, however, will be designed to allow other livestock sectors to be added when and as appropriate in the future. The Ministry of Agriculture and Forestry (MAF) considers that if sheep were to be included at some time in the future, it would likely be at a flock or mob level rather than at an individual animal level. It believes the addition of any other species to NAIT should only be considered once the system is up and running for cattle and deer.

Why do we need NAIT?
NAIT will safeguard farmers’ incomes by protecting New Zealand’s excellent animal health reputation in overseas markets, meeting growing consumer expectations for traceable food products and by enhancing biosecurity.

How will NAIT improve biosecurity?
New Zealand’s current animal tracing capability is insufficient to manage a major livestock disease outbreak. NAIT will enable the location of cattle and deer to be traced much faster than existing manual systems, and will provide more reliable and up-to-date information on animal movements. This will improve biosecurity surveillance and response efficiency.

How will NAIT safeguard market access?
New Zealand faces losing access to, or share of, premium markets if it cannot offer commercial assurances that its biosecurity systems are supported by whole-of-life traceability. There is high likelihood that lifetime traceability of livestock will be a condition for commercial access to markets in the future. Many of New Zealand’s major trading partners have already adopted such systems.

This trend is supported by the World Organisation for Animal Health (OIE), which has called for progressive implementation of animal identification and traceability systems worldwide. New Zealand is lagging behind its trading competitors in adopting lifetime traceability of livestock. Our competitors are poised to benefit at New Zealand’s expense if we do not take steps to improve animal identification and tracing in this country.

NAIT will also help New Zealand demonstrate to trading partners that all potentially infected animals during a disease outbreak have been contained. For example, New Zealand would be able to assure importers that an outbreak had been isolated to a particular location or region.

The quicker New Zealand can provide such assurance, the quicker it will enable the lifting of any trade restrictions imposed as a result of an outbreak.

Will NAIT enable producers to get higher premiums in overseas markets?
Yes, for certain meat products that are responsive to traceability features.

Have the benefits of NAIT been quantified?
Yes. A conservative cost-benefit analysis has been completed in
The Animal Health Board (AHB) has approved RFID (radio frequency identification devices) as secondary tags for deer under its national identification programme to control bovine tuberculosis.

Specifically, AHB has approved the use of ISO134 Khz low frequency HDX and FDX RFID ear tags that are compliant under the National Animal Identification and Tracing (NAIT) standard for cattle and deer.

The move brings identification for deer in line with cattle, which received AHB approval for NAIT-compliant RFID as secondary devices earlier in the year.

The tags mean cost savings for deer and cattle farmers who wish to take advantage of the animal management benefits of RFID technology, as the electronic device will be able to be substituted for the official secondary tag. It also avoids the need to apply an additional ear tag to animals in order to meet anticipated NAIT requirements.

Under the NAIT scheme, lifetime traceability using RFID tagging is expected to become mandatory for cattle from late 2011 and for deer from late 2012 (one year later).

The two official livestock tagging schemes for cattle and deer in New Zealand (AHB and Livestock Improvement Corporation’s MINDA programme) now accept NAIT-compliant RFID devices.

The new devices can be purchased through current tag ordering systems.

NAIT is intended to ensure speedier responses to biosecurity scares and to safeguard access to export markets by providing lifetime traceability of individual cattle and deer.

Susan Keenan, Principal Adviser, MAF Biosecurity Policy, susan.keenan@maf.govt.nz

What do farmers think about animal traceability?

There is currently a high level of support/acceptance for the project among farmers, based on the results of a comprehensive stakeholder engagement and communications programme. An independent farmer survey undertaken in early 2009 showed that, on average, farmers are supportive of a mandatory traceability system, with a far greater number expressing support (58 percent) than those against it (17 percent).

How will NAIT fit with other official New Zealand identification schemes?

NAIT tags will be incorporated as secondary tags under existing official identification schemes. The aim is to move to a single tag for all official purposes in the medium term.
REVISED IMPORT HEALTH STANDARD FOR SEA CONTAINERS

Importers will need to comply with a revised sea container import health standard (IHS) by 1 March this year.

Every container entering New Zealand must have specific information submitted to MAF Biosecurity New Zealand (MAFBNZ) before it arrives, including a quarantine declaration.

The declaration attests to the cleanliness of the sea container and whether or not it is carrying wood packaging. The container must have been inspected internally and externally by the person packing it to ensure it is clean – that is, free of dirt, grass, insects, seed and so on. The declaration then needs to be completed and signed by a manager of the packing or exporting facility.

If containers arrive in New Zealand with contamination this can result in delays, and the container may have to be cleaned and re-inspected before it can be delivered to the final destination or goods can be released.

The MAFBNZ Border Standards Directorate (Operational Standards and Facilities Group) recently revised the IHS for the importation of sea containers into New Zealand.

The changes ensure the IHS is feasible and fair, and will continue to ensure the effective and efficient management of biosecurity pests and contamination associated with the increasing number of sea containers crossing our border.

The revised standard also provides an opportunity for industry parties to develop equivalent systems for managing biosecurity risks and will provide MAFBNZ with appropriate options when non-compliance is found.

MAFBNZ Senior Cargo Operations Adviser Grant Weston says the changes came into effect on 1 October 2009 and require stakeholders to be compliant by 1 March this year.

"While the changes are reasonably straightforward it is critical that importers understand how the changes will affect the way they currently work," he says.

The three main areas of change are as follows.

- If Quarantine Declaration requirements for full or empty containers have not been met, MAFBNZ will classify them as of high regulatory interest (HRI) and a six-sided inspection will be carried out. Previously, a four-sided search inspection was carried out on non-compliant containers.
- The introduction of a "12-hour rule" for the submission of sea container information will be introduced. This will mean that documentation must be submitted no later than 12 hours before the estimated time of arrival of the vessel.
- There will be additional MAFBNZ coastal container transhipment requirements.

Mr Weston says around 50,000 sea containers arrive at New Zealand ports every month from all over the world, bringing with them the possibility of new unwanted pests and diseases.

For more information, see: www.biosecurity.govt.nz/imports/non-organic/standards/seaco.htm

Megan Brown, Senior Adviser, Operational Standards and Facilities Department, MAFBNZ, megan.brown@maf.govt.nz
MAF Biosecurity New Zealand (MAFBNZ) is changing the way it manages the risks posed by international travellers arriving at New Zealand airports to a more targeted approach. This will maintain or improve biosecurity protection and more efficiently and effectively manage risks posed by international travellers across the biosecurity system.

The first visible change was made at the beginning of December when the New Zealand Customs Service introduced SmartGate at Auckland International Airport. SmartGate is an automated two-step passenger clearance system for New Zealand and Australian ePassport holders. SmartGate ensures a consistent approach across Australia and New Zealand, improved capacity to handle future passenger increases, and a secure and efficient way for passengers to clear passport control. Passengers are still subject to existing compliance checks by border agencies.

A similar SmartGate system is already operational at most international airports in Australia. The system is scheduled to be rolled out at Wellington and Christchurch airports mid-year.

Plans are also in place to introduce "direct exit" to the biosecurity area at airports. This new approach will enable compliant trans-Tasman travellers to exit the airport more quickly, while targeting people who bring in undeclared risk goods and toughening up on non-compliant behaviour. Risk profiling will be used to separate and streamline low-risk passengers. High-risk passengers will continue to have their bags x-ray screened or physically searched.

Currently, low-risk New Zealand and Australian passport holders arriving at Auckland International Airport from Australia are directed to Exit A, and should experience a differentiated exit process and reduced queuing times. The process uses electronic profiling of passengers, with those considered low risk for carrying biosecurity items directed to Exit A. Profiling is conducted through SmartGate or by Customs officers.

MAFBNZ’s Auckland Airport Manager Kerri-Ann O’Neill says Exit A has reduced the need for passengers to present themselves to MAF biosecurity inspectors, therefore removing a queuing point on arrival.

Passengers, instead, collect their baggage and proceed to Exit A where it is x-ray screened prior to exiting the airport.

The new system is in its initial phase and there are a number of recommendations expected to improve the layout, signage and management of passengers through this exit point.

In addition, the current $200 instant fine for people failing to declare or dispose of biosecurity risk goods will be increased to $400 to encourage further compliance.

New Zealand has a world-class biosecurity system and a high level of protection from pests and diseases. These new initiatives will enable MAFBNZ to identify and target, through the use of risk profiling, the 4 percent of international passengers who pose the highest risk while maintaining or improving our high level of protection.

Kathy Dyer, Communications Adviser, MAFBNZ, kathy.dyer@maf.govt.nz
Kauri dieback programme moves into long-term management

The Government is injecting $4.7 million into a programme to help save kauri trees threatened by the new-to-science disease known as kauri dieback (*Phytophthora taxon Agathis*).

The five-year programme aims to contain the soil-borne disease, which is attacking kauri trees in the upper North Island and on Great Barrier Island.

“This disease is a serious biosecurity threat to kauri, a species that we as New Zealanders are duty-bound to protect,” says Joint Management spokesperson John Sanson.

“The Government's $4.7 million pledge brings total funding for the future management of kauri dieback to $9.8 million, including contributions from the regional councils. This demonstrates the importance placed on the protection of this treasured species.

“New Zealand's ancient kauri forests are a vital part of the ecosystem as well as being part of our heritage, and must be protected for future generations.”

MAF Biosecurity New Zealand, the Department of Conservation and four regional councils – Auckland, Northland, Environment Bay of Plenty and Environment Waikato – have been working together since late 2008 to manage the threat of kauri dieback, and with Māori, are committed to working collaboratively.

The five-year programme will cover research into the detection and spread of kauri dieback and methods to control it. A public awareness campaign to arrest its spread will also be developed.

For more information about kauri dieback and the work of each agency involved, visit www.kauridieback.co.nz

Lisa Gibbison, Senior Communications Adviser, lisa.gibbison@maf.govt.nz

Kauri tree in the Cascades. Photo: Auckland Regional Council.
Tauranga stevedores recently working evening shift on the vessel Pacific Flores reported to MAF Biosecurity New Zealand (MAFBNZ) that they had found the biggest ants they had ever seen.

From the C3 Limited stevedores’ description, it seemed these might well be carpenter ants. The on duty MAFBNZ quarantine inspector was immediately sent to investigate.

The ants were discovered in a consignment of Canadian cedar, which was due to be discharged in Brisbane, Australia, in December. They were confined to their host material of timber packs within the holds of the vessel, so MAFBNZ notified the Australian Quarantine and Inspection Service (AQIS) of the find and that identification was confirmed as *Camponotus pennsylvanicus*, commonly known as black carpenter ants.

The cargo was subsequently fumigated in the vessel hold prior to being discharged in Brisbane.

Besides being objectionable by their presence, carpenter ants damage wood by hollowing it out for nesting. They bore holes in wood, which then has a smooth, sandpapered appearance, with shredded fragments of wood – similar to the look of coarse sawdust – being ejected from the holes through pre-existing cracks or slits made by the ants. The excavated sawdust usually remains hidden behind a wall or in some other concealed area.

- Sue Gould, Team Manager, Border Operations Central and Offshore, sue.gould@maf.govt.nz
A MAF Biosecurity New Zealand (MAFBNZ) inspector accompanied a small cruise ship to Raoul Island in November to ensure no food or any other organic matter was taken ashore given the conservation status of the island.

The vessel, Clipper Odyssey, a luxury eco-adventure-style cruise ship with 50 passengers on board, made the Raoul Island nature reserve stopover during a voyage between Fiji and Tauranga.

Prior to going ashore, all footwear was scrubbed and sprayed with a virucidal disinfectant, and all camera tripods, bags and gear with Velcro straps were inspected to make sure they were free from seeds and soil. A footbath of virucidal disinfectant was set up on the deck for passengers and crew to walk through before boarding zodiacs to go ashore.

On the evening prior to landing, the MAFBNZ inspector briefed all passengers on biosecurity requirements, such as not taking any food ashore, and also not removing anything from the island.

Inspection of gear was carried out in conjunction with the processing of arrival declaration cards. Passengers and crew presented the biosecurity risk items they had marked on their cards for MAFBNZ inspection and clearance. The items included all tramping boots, snorkelling gear, camera tripods, dried nuts and fruit, and all shells collected in Fiji. Any other shoes they planned to wear on the island were also presented at this inspection.

Raoul is a beautiful island, rich in biodiversity, including flora such as the kawakawa, Kermadec pohutukawa and nikau palm, and fauna such as the endemic red crowned parakeet and tui. Eight Department of Conservation (DOC) rangers are currently living on the island for six to 12 months, spending their days weeding out exotic pest species. Two rangers met the tourists on arrival and accompanied them to their lodge, as required by the permit issued to the Clipper Odyssey. The DOC rangers had also kindly baked scones for their cruise ship guests.

The Clipper Odyssey has been a regular caller to New Zealand. Each time she visits, all prohibited stores are removed to allow the vessel to cruise more freely around the coast. All dry stores are also inspected enroute to ensure they are not contaminated or infested with insects.

During the recent initial inspection at sea, weevils and ants were found throughout the dry store, especially in rice originating from Thailand. Consequently, all the rice was loaded into the meat locker freezers straight away to eliminate the pests. The dry stores were also sprayed daily prior to the vessel’s arrival in Tauranga to ensure that no remaining insects were alive.

On arrival in Tauranga, all fresh fruit and vegetables were removed for destruction. Meat, eggs and some of the dairy products, such as cheese, were removed and stored in a refrigerated container at the port until the vessel finally departs New Zealand waters at the end of the summer season.

Sue Gould, Team Manager, Border Operations Central and Offshore, sue.gould@maf.govt.nz
Special and fragile ecosystems

All islands of the Kermadec group, of which Raoul Island is one, are part of a specially protected nature reserve and can only be visited with a landing permit from the Department of Conservation (DOC).

Lying some 1,000 kilometres northeast of New Zealand, the Kermadecs are a chain of islands spread over 250 km. The area is volcanically active and earthquakes are an almost daily occurrence.

The islands are uninhabited, apart from Raoul where DOC maintains a staffed field station. Staff and volunteers collect meteorological and seismological information, control weeds and maintain the facilities. DOC rangers also police the nature and marine reserves.

Most of the Kermadec Islands were made a nature reserve in 1934. As one of the highest levels of protection under New Zealand law, this status recognises the special and fragile nature of the islands’ ecosystems and native plants and animals.

The Kermadecs have never been connected to mainland New Zealand, and a unique assemblage of species of subtropical and temperate origins has developed, many of which are found nowhere else.

Of the 113 plants native to the Kermadecs, 23 species or subspecies of plant are endemic. Raoul, the only forested island, has a unique forest mix, with the dominant canopy species being Kermadec pohutukawa and Kermadec nikau.

Thirty-five bird species are known on the islands, five of which are found nowhere else in the world. While the islands have retained their natural character, they have also suffered major changes through introduced pests and weeds.

Forest and seabirds on Raoul are being monitored to see the effects of removing cats and rats from the island in 2002. Already there are signs of recovery. The Kermadec parakeet has now returned to breed, while a new sooty tern colony has re-established and is expanding. In 2007, three new colonies of black winged petrel and a colony of wedge-tailed shearwater were also found on the island. Small numbers of Kermadec petrel have also been seen to breed again on Raoul.

DOC’s weed control programme focuses on 14 weed species, including Mysore thorn, Madeira vine, Brazilian buttercup bush and black passionfruit.

Source www.doc.govt.nz – for more information search on “Kermadec” or “Raoul”.

Cruise ship passengers arriving at Raoul Island.

MAFBNZ Inspector Anita Wells processes arrival declaration cards.

Cruise passengers explore Raoul Island.
New Zealand Defence Force (NZDF) personnel deployed to assist Samoa and Tonga immediately after September’s devastating tsunami showed how well aware they were of biosecurity risks.

MAF Biosecurity New Zealand (MAFBNZ) sent two inspectors to Samoa the following month to join the NZDF clean-up of returning equipment following the tsunami relief deployment of troops.

The cleaning of gear in the military camp was of a very high standard and many of the interceptions were found prior to cleaning. NZDF personnel did a great job and showed how aware they were of New Zealand’s biosecurity requirements.

The flight deck on board the *HMNZS Canterbury* was set up as a cleaning station for equipment craned off landing craft and proved to be very effective in ensuring that uncleared cargo was kept separate from cleared cargo until it had been passed.

All vehicles required decontamination for soil and plant material, while spiders were found on a JCB digger.

Biosecurity interceptions included ants, ant egg masses, geckos, lizards, spiders and spider egg masses. A water purifying unit’s screw holes were found to be contaminated with mud wasp nests, while some dive gear and medical bags were contaminated with plant material.

Other interceptions included plant material in containers and in many of the NZDF dome-shaped mosquito nets, two immature breadfruit found on the roof of a vehicle, and minor interceptions of soil and organic material. Six pairs of shoes required extra cleaning, but few seeds were found.

Sue Gould, Team Manager, Border Operations Central and Offshore, sue.gould@maf.govt.nz

Navy divers survey the search area along the coast of Lalomanu, Samoa. Photo: New Zealand Defence Force.
Helen Horrell has joined the MAF Biosecurity New Zealand (MAFBNZ) Post Border Systems team as a Business Analyst. Her primary focus will be the Government Industry Agreement Project. Helen has a BSc in human nutrition but recently worked as a Business Analyst for the Accident Compensation Corporation in a Claim Management System implementation, for the Transport Accident Commission in Victoria, Australia, consulting the business team on project delivery, and as a Project Manager for a Primary Health Organisation in Invercargill.

Jen White recently joined the Post Border Directorate as Executive Co-ordinator to Pest Management Group Manager Andrew Harrison. Jen has worked predominantly in corporate environments as a secretary/office administrator. Prior to joining MAFBNZ, she was a Personal Assistant to three partners in the PricewaterhouseCoopers Wellington tax practice.

Heather Crawford recently joined the Post Border Directorate as Executive Co-ordinator to Biosecurity Response Manager David Hayes. Prior to joining MAFBNZ, Heather worked for the New Zealand Defence Force as Personal Assistant to the Captain Fleet Personnel and Training based at the Devonport Naval Base in Auckland.

Following the earthquake and subsequent tsunami in and around Samoa on 30 September 2009, an RNZAF C-130 Hercules aircraft flew to Samoa carrying New Zealand’s International Aid and Development Agency (NZAID), Red Cross and NZDF personnel, as well as medical and relief supplies. An Air Force Orion carried out searches for missing people in Samoa and Tonga and to help determine the extent of the damage. New Zealand Army medics, Navy divers and NZDF engineers were also deployed, along with New Zealand Police Search and Rescue dogs and handlers, and additional aid equipment. The HMNZS Canterbury delivered further supplies to the stricken region.
Detection of GM seed – specialised training for cargo inspectors

Maize, soybean, oilseed rape, cotton and alfalfa account for the majority of the genetically modified (GM) crops grown worldwide. As New Zealand legislation does not permit the release of GM organisms into our environment, the Ministry of Agriculture and Forestry (MAF) needs to ensure that seeds imported for sowing here are not GM.

MAF has developed protocols to test for the presence of GM material in maize, oilseed rape, alfalfa and soybean seeds that are imported for sowing. Seed importers must ensure the seeds are tested in a MAF-accredited laboratory prior to being released into New Zealand. Currently, there are four such laboratories, one each in Australia, the United States, France and Sweden.

Importers must ensure a GM test certificate is provided from one of these laboratories for each seed line. The certificates must comply with the protocols, the most important being that the correct GM testing has been done and the results are negative.

Only specially authorised MAF inspectors screen the test certificates and other documents associated with the importation of these seeds. When GM test certificates do not comply or are absent, MAF takes a sample of seeds from the consignment for testing overseas. Again, this sampling can only be done by authorised inspectors.

The document screening and sampling are complex tasks. The MAF Biosecurity New Zealand (MAFBNZ) Border Training Team has developed an effective training package to assist the inspectors.

There are two main training and assessment modules, one for inspectors who screen the documents and another for inspectors who take the seed samples. Refresher training modules have also been developed for the two groups in order to meet their annual training and assessment needs.

The document screening training ensures authorised inspectors can:
• verify that the correct GM testing has been done for each seed species;
• correctly interpret the results on the GM test certificate; and
• relate the test certificate to a particular lot and seed line in a consignment.

The seed sampling training ensures authorised inspectors can:
• select the correct sampling regime to ensure a representative sample is obtained, especially when a lot is made up of several bags with different weights; and
• calculate the weight of seeds required to ensure the representative sample contains 3,200 seeds, as required by the testing protocols.

If a consignment consists of more than one lot of the same type of seed and there is less than a specified weight, the importer can choose to have a sample from each lot tested or a composite sample of all the lots tested. If the lots weigh more than the specified weight, samples must be taken from the individual lots. This ensures that enough seed is taken from each lot to detect GM material if it is present.

The Border Training Team has developed templates to assist inspectors to obtain a representative sample, and these have been incorporated into the border operational procedures.

Since June 2008, 16 inspectors have been trained in document screening and 19 in seed sampling.

Jayne Parkin, Training Team Co-ordinator/Designer, Border Standards Directorate, MAFBNZ, jayne.parkin@maf.govt.nz
AWARD-WINNING RESEARCH IMPROVES SHEEP WELFARE

A senior researcher at the University of Auckland’s Liggins Institute has been selected as the recipient of the 2009 National Animal Ethics Advisory Committee (NAEAC) Three Rs Award.

Dr Mark Oliver received the award in recognition of his long-term work on the refinement of indoor physiological studies of sheep, which has improved animal welfare.

NAEAC selected Dr Oliver’s work from several high-calibre nominations. The committee considered Dr Oliver’s work to refine the feeding and housing of sheep, with a focus on reduction and refinement of animal use, to have far-reaching effects.

The concept of the Three Rs, from which the award takes its name, is to replace live animal subjects, reduce the number of animals used and refine experimental techniques to minimise pain and distress.

NAEAC Chair Dr Virginia Williams said the Three Rs were the cornerstone of the ethical use of animals in research, testing and teaching.

“This award celebrates achievements in the implementation of the Three Rs and promotes the concept within the scientific community and to the wider public.”

Dr Oliver has been instrumental in such innovations as the design of a specialised concentrate feed for sheep in long-term indoor housing, a pre-trial programme that includes individual observation of sheep, and nutritional manipulation of pregnant sheep to measure effects on the foetus. With animals individually managed, in their own pens and on a well-balanced diet, undernutrition can be managed by assessing weight change and altering feeds. This allows superior monitoring of animal welfare and the reduction of adverse complications developing in animals with higher dietary demands.

A colleague of Dr Oliver’s accepted the award on his behalf at the Royal Society of New Zealand’s annual Science Honours dinner in November.

Three Rs Award

The NAEAC Three Rs Award is a national award that recognises excellence in the humane use of animals in research, testing and teaching. The award is made to an individual, group or institution within New Zealand that epitomises best practice with regard to the Three Rs.

Information about past winners can be found at www.biosecurity.govt.nz/regs/animal-welfare/naeac/annual-reports.

A call for nominations for the 2010 award will be made in July.
Regional councils promoting improvements to pest management

Biosecurity magazine asked the Taranaki Regional Council for its views on the importance of protecting New Zealand from pests and diseases, and the challenges ahead. Chief Executive Basil Chamberlain responds.

New Zealand has an especially high reliance on primary sector trade for its national income. These biologically based industries are at constant risk from existing and new pests. Economists have recently completed a substantial report for the Government that advises the total economic cost of pests to New Zealand is in the order of $3.4 billion annually, equivalent to almost 2 percent of national gross domestic product (GDP). In addition though, New Zealand also has biodiversity assets that are internationally unique and place New Zealanders in a stewardship role greater than that of people in most countries. We also enjoy an enviable lifestyle, largely based on the quality of our outdoor environment and its relative freedom from pests that may cause significant harm to our health or general quality of life. Effective management of plant and animal pests, therefore, is especially important in New Zealand.

By extension, the appropriate control of animal and plant pests is of profound importance to New Zealand’s regional communities. Regional councils’ particular role in biosecurity is at the pest management end of the spectrum of biosecurity activities. All regional councils have a primary function in facilitating effective pest management in their regions. Although many of the problems and challenges faced are common across New Zealand, large differences naturally exist in pest management issues and responses in our regions. The pest issues in metropolitan Auckland are dramatically different from those of Central Otago or the Taranaki ring plain. The differences that exist because of our highly varied landscapes, pest types and communities are a key reason why regional councils are often best placed to facilitate cost-effective approaches to pest issues.

Most of the pest control that occurs in New Zealand happens voluntarily. Individuals or groups of people undertake a wide array of pest control activities as part of day-to-day life. These range from spraying fungicides on our rose gardens to the use of sophisticated animal remedies, and from volunteer community groups clearing weeds or possums from ecologically significant areas through to farmers or foresters controlling pests on large tracts of cereal crops or pine forests.

However, not all pest management happens in this “automatic” way where sufficient incentives exist for individuals to engage. In many cases, public intervention is required to achieve community goals. After due process, people may be required to engage or fund pest management activities to achieve outcomes that are considered important by the broader community.

About a year ago, regional councils prepared a “think piece” focused primarily on these types of public good intervention situations where it is vital that the right processes, incentives and checks and balances exist within our systems to ensure pest management occurs as effectively and efficiently as possible. This report describes New Zealand’s current arrangements and processes for determining pest management activities. It also sets the scene for pest management into the future by briefly describing the many challenges we face. What is clear is that, whether dealing with issues related to pest control tools or the increasing number of pest threats associated with greater trade and travel across our borders, the overall picture is for challenges involving more complexity, greater costs and more difficult trade offs.

The report then addresses how well New Zealand is organised to face those challenges. It identifies important changes needed to provide a more optimal set-up so as to more successfully face future challenges, whatever they may be.

When distilled, at the core of the report is the recognition that public-good pest
management essentially serves one or both of just two purposes.

The first purpose is to ensure the actions or inactions of landowners in managing pests do not cause unacceptable harm to neighbours or others in the community. Economists describe this concept as ensuring that landowners manage or internalise the full costs of their activities. Regional councils deal with this good neighbour issue across the full range of their public duties. In resource management, for example, councils and their communities are familiar with the concept of controlling pollution and polluters to the extent that is appropriate in the public interest. Part of this role is to ensure that the “polluter pays” concept is applied.

The second is where public intervention and investment in pest management occur, essentially to achieve public-good outcomes related to the health, environmental, social, cultural or economic aspirations of our communities. Again, this concept is something that councils and the public are very familiar with. We pay taxes and rates to support the development of public-good assets and outcomes that would otherwise not exist.

To progress these purposes it is essential that land tenure neutrality be introduced to the biodiversity regime. All landowners must in practice be and be seen to be treated fairly and equitably in respect of their responsibilities to neighbours and the wider community.

As the largest landowner in New Zealand, it is essential that the Crown is bound, as now occurs with all other landowners, to act as a good neighbour in an appropriate manner consistent with other precedents. The Government agreed to “be a good neighbour” in principle more than a decade ago, but the practice has fallen short. It is now time for a more formal and binding commitment. It is time to change New Zealand’s dual approach to pest management, being presently one for Crown lands and a different one for all other land. Pests and associated pest management responses do not recognise land boundaries, nor do they behave with deference to different categories of land ownership.

It is also essential that greater clarity be provided in terms of roles, responsibilities and jurisdictions over terrestrial, fresh water and marine environments. Better co-ordination and more interactive partnerships will be an essential feature of successful pest management in the future. To be successful, however, partnerships will need to be based on individuals and organisations having better-defined accountabilities than presently exist. Greater clarity is required in respect of public sector versus private sector roles and between central and regional government.

Clarity of purpose and roles is an essential foundation for working more effectively and proactively in the future. Together with creating a tenure-neutral pest management regime, these changes will substantially enhance the ability to capture all of the opportunities that exist.

The Future of Pest Management Project

In 2009, MAF Biosecurity New Zealand (MAFBNZ) commissioned an independent company to write a “think piece” on the future of pest management in New Zealand to stimulate discussion on the topic.

Both the regional council (see accompanying article) and MAFBNZ-commissioned think piece reports found New Zealand’s pest management system stacked up well compared with other jurisdictions. At the same time, both suggested that new policies and approaches would be needed to position the pest management sector to meet future challenges.

Challenges faced by the sector include: an increasing pest burden, risks to ongoing availability of physical control tools, lack of clarity around roles and responsibilities of those involved in pest management, the need for more collective action between organisations and individuals, and lack of flexibility in some aspects of the Biosecurity Act 1993.

The Future of Pest Management Project was set up to address these issues. Its brief is to design improvements to pest management systems that will deliver what New Zealand as a nation needs for the next 25 years.

In 2009, the project focused on six critical areas, each with a group of sector representatives developing possible solutions. A draft national plan of action is being developed for consideration by central and regional chief executives. This will be released for stakeholder consultation mid-year. Interested parties will be invited to provide feedback through a combination of workshops, hui and written submissions. This feedback will inform the preparation of a final action plan and support processes to improve the law.

For more information see the MAFBNZ website

www.biosecurity.govt.nz/pests/surv-mgmt/mgmt/future-project
will present from collaborative actions. Without these changes, effective pest management partnerships will become less rather than more common as the bank of goodwill that has supported activities over the past decade is depleted. Our presently fragmented dual processes, unclear roles and inequitable landowner responsibilities, will instead continue to drive non-integrated responses, response gaps and a reactive rather than proactive approach.

These concepts, then, form the key recommendations of the regional councils’ think piece report. There are other important recommendations related, for example, to tuning intervention tools such as pest management strategies and ensuring that Crown funding is deployed in a more efficient and whole-of-government way. However, the recommendations dealing with tenure neutrality and clarity of roles are the primary changes needed to take pest management in New Zealand forward to a different level.

The report has formed an important foundation input into a substantial MAF Biosecurity New Zealand project examining the future of pest management. Regional councils have strongly supported and are actively engaged in that project alongside many others who share a common aim of continuous improvement in our pest management activities. Councils congratulate the Government for taking a leadership role in this work and for the progress to date in furthering the key changes we regard as fundamental to improvement.

In considering changes for the future, we must guard against adding unnecessary complexity and costs to the point where our ability to act becomes hamstrung. We must make our processes as simple, flexible and agile as possible. The challenges we face will demand this. Presently, pest management in New Zealand is relatively well set up and achieves good outcomes compared with many other countries. We have also seen substantial improvements in the past 20 years, driven by regional councils and their biosecurity partners.

Interestingly, none of the recommendations in the councils’ report are dramatically new. Nor do they involve major surgery. New Zealand does not need a new set of regulatory instruments. More or new organisations are also not required to improve pest management. Rather, the changes needed are important foundation re-settings and tunings to what we do now. That noted, a number of the required changes will require legislative amendment, changes to existing practices and strong executive and political leadership to capture the opportunities that they will promote.

Linda Luong has joined the MAF Biosecurity New Zealand (MAFBNZ) Border Standards Directorate as an Animals Imports Adviser. Previously, she was on a fixed-term contract working with the Operations and Facilities Group to help implement the Standard for General Transitional Facilities for Uncleared Goods (TF Gen), update the Accredited Persons training material, and process transitional facility applications. Linda has an MA in international studies (with a China focus) from the University of Washington.

Janice Attrill has joined the Border Standards Directorate as an Adviser in the Animal Exports Group. Prior to joining MAFBNZ, she was a Senior Adviser for the New Zealand Food Safety Authority (NZFSA) Event and Emergency Response team, where she was involved in many issues, including tutin in honey and salmonellosis in cows. Janice has worked in the dairy industry, laboratory and quality management areas. She is currently studying towards the University of Otago’s post-graduate Diploma in Public Health.

Leanne Stewart has joined the Border Standards Directorate as a Technical Support Officer in the Plant Imports and Exports team. She was previously a student relations consultant at Massey University, where she was involved in student management and New Zealand Qualification Authority (NZQA) workplace assessments. Leanne has a BSc in ecology and plant biology from Massey University, and is continuing studies towards an MSc in plant protection.

Marnie Thomas has joined the Border Standards Directorate as a Senior Adviser in the Animal Imports team, where she will focus on the importation of horses and poultry. For the previous seven years, Marnie worked in Western Australia as a Veterinary Officer with the Department of Agriculture and Food, where she was involved in animal health and disease surveillance, animal welfare, live animal export and emergency animal disease preparedness. Prior to that, she spent five years in a mixed animal veterinary practice in Geraldton, Western Australia. Marnie is a member, by way of examination, of the Australian College of Veterinary Scientists in epidemiology, and has a Diploma of Business in frontline management.

Karen Nicoll has joined the Border Standards Directorate as a Senior Adviser in the Animal Exports Group. Karen previously worked for the state-owned enterprise AsureQuality, in Hamilton, in a range of roles that covered a variety of livestock industries, food safety, live animal exports and auditing of germplasm centres. She has a Bachelor of Veterinary Science from Massey University and a Master of Veterinary Public Health Management from Sydney University.

PEOPLE IN BIOSECURITY
MoU enhances MAFBNZ–IANZ co-operation

MAFBNZ Border Standards Director Tim Knox (left) and International Accreditation New Zealand Chief Executive Officer Llewellyn Richards sign the new MoU between MAF and IANZ.

A memorandum of understanding (MoU) has been signed between the Ministry of Agriculture and Forestry (MAF) and the Testing Laboratory Registration Council (usually known as International Accreditation New Zealand or IANZ).

The MoU defines the relationship between, and roles and responsibilities of, IANZ and MAF in the assessment of third party organisations such as independent verification agencies, recognised agencies and testing laboratories.

Third party organisations are an essential part of MAF Biosecurity New Zealand’s (MAFBNZ’s) border standards work. IANZ is a government accreditation body responsible for providing accreditation of verification agencies and recognised agencies. The MAFBNZ Border Standards Directorate is responsible for administering the technical standards and procedures for the third party organisations to ensure that plant and animal imports and exports meet certain requirements. The programmes covered are:

• export of live animals and germplasm;
• export laboratory programme for export of live animals and germplasm;
• diagnostic facilities that undertake the identification of organisms that are animal pathogens, intercepted at the border or within transitional facilities;
• export phytosanitary programme for plants and forestry;
• import/export treatment suppliers;
• diagnostic facilities undertaking the identification of new plant micro-organisms, invertebrates, vertebrates (including reptiles and amphibians) and new plants (including higher plants, mosses and aquatic weeds).

The MoU was developed to provide maximum co-operation between MAFBNZ and IANZ during accreditation assessments where both parties participate. The benefits of this are greater efficiency and cost effectiveness for third party organisations compared with independent assessments by each party.

The benefits of the relationship for IANZ and MAFBNZ include more effective communication, the promotion, development and maintenance of sound assessment practices, and a robust and internationally credible system.

Updates

Issued IHS 152.02: Importation and clearance of fresh fruit and vegetables into New Zealand

MAF Biosecurity New Zealand (MAFBNZ) has issued the import health standard (IHS) 152.02: Importation and clearance of fresh fruit and vegetables into New Zealand.

This IHS is now dated 1 February 2010. It can be viewed at: www.biosecurity.govt.nz/files/ihs/152-02.pdf

The following sections have also been updated.

• Summary of approved commodities for China.
• Addition of table grapes (Vitis vinifera) from China. This is a new IHS, which was issued provisionally on 5 January 2010, and is now issued as final.
• Addition of pears (Pyrus bretschneideri, Pyrus sp. nr. communis and Pyrus pyrifolia) from China. This is a new IHS, which was issued provisionally on 15 January 2010 and is now issued as final.
• Removal of requirements for frozen commodities, redirecting to MAF Biosecurity Standard BNZ-NPP-HUMAN Importation into New Zealand of stored plant products intended for human consumption for conditions of entry.
• Removal of Thysanoptera Thripidae Frankliniella occidentalis from the non-regulated pest list to the regulated pest list for pears (including sugar snap and snowpeas), and Pisum sativum from Zimbabwe.

Any questions relating to the issue of this import health standard can be emailed to: plantimports@maf.govt.nz

Notification of reissue of IHS for crocodile meat products from Australia

The import health standard (IHS) for crocodile meat products from Australia dated 18 January 2010 has been reissued.

The standard can be viewed at: www.biosecurity.govt.nz/imports/animals/standards/meacroic.aus.htm

The Australian Quarantine and Inspection Service (AQIS) requested an update to this IHS to reflect that the Australian export certificate EX46 has been replaced by FX46.

To prevent the need for amending this import health standard when AQIS certificates are amended again, the reference to AQIS certificates FX46 and/or EX46 have been removed from the standard. Instead, the standard lists the clauses the certificate needs to include.

In addition, the standard clauses of this IHS have also been updated. The amendments have been agreed with AQIS.

This IHS replaces the previous version dated 10 November 1998.

For more information: email animalimports@maf.govt.nz or phone 0800 008 333
Amended IHS for juvenile yellowtail kingfish from Australia
Issue date 28 January 2010
In January 2009, MAF Biosecurity New Zealand (MAFBNZ) received a request to add two suppliers to Appendix 1 of the existing import health standard (IHS) for juvenile kingfish from Australia.

On the basis of this request, MAFBNZ has decided to delete the requirement for juvenile yellowtail kingfish to be sourced from MAFBNZ-approved suppliers. This IHS is based on the Import Risk Assessment: Juvenile yellowtail kingfish (Seriola lalandi) from Spencer Gulf, South Australia (dated December 2002).

As stated in the review of submissions for this import risk assessment, the source of the juvenile yellowtail kingfish does not significantly affect any of the outcomes or recommendations of the assessment. Therefore, the source of the kingfish does not need to be restricted to approved suppliers.

On the basis of this amendment, juvenile yellowtail kingfish can be imported from any hatchery in Australia provided they meet the import requirements of this standard.

The amended IHS has not been consulted on as the amendment is minor.
This standard is now dated 18 January 2010 and replaces that dated 22 October 2004.

The standard can be viewed at: www.biosecurity.govt.nz/imports/animals/standards/kngfisic.aus.htm

For further information: email animalimports@maf.govt.nz or phone 0800 008 333

Amended IHS for ornamental fish and marine invertebrates from all countries
Issue date 22 January 2010
This import health standard (IHS) has been amended to add several species of freshwater and marine fish and marine invertebrates to the list of species eligible for import under the standard. The amendment is based on several requests submitted by importers.

A new risk analysis for ornamental fish is currently being finalised, after which the standard will be amended again.

Key changes of this current amendment include the following.

- The addition of species within new “low risk” genera. These species were submitted during previous amendments and needed to go through the risk analysis process before they could be added to the IHS.
- The addition of species within “low risk” genera already listed on the IHS.

This includes the correction of administrative errors made during a previous amendment to the IHS.

This standard is now dated 17 December 2009 and replaces that dated 21 March 2007.

The standard can be viewed at: www.biosecurity.govt.nz/imports/animals/standards/fisornic.all.htm

For further information: email animalimports@maf.govt.nz or phone 0800 008 333

Draft IHS for milk and milk products for human consumption for the European Union and Switzerland
Dated 5 February 2010
This is a new draft amendment to the above import health standard (IHS) and is based on Annex V of the European Union/New Zealand Veterinary Agreement, Annex 11 of the Agreement between Switzerland and the European Community on trade in Agricultural Products, and the New Zealand Food Safety Authority’s (NZFSA’s) regulatory framework for unpasteurised milk products.

The standard can be viewed at: www.biosecurity.govt.nz/biosec/consult

For further information about the NZFSA regulatory framework for unpasteurised milk products, see: www.nzfsa.govt.nz/dairy/subject/unpasteurised-milk-products/index.htm

Comments on the amendment should be sent to the Ministry of Agriculture and Forestry (MAF) by close of business on Friday 19 March 2010.

MAF encourages respondents to forward comments by email to: Mey.Chan@maf.govt.nz

For further information: email plantimports@maf.govt.nz or phone 0800 00 83 33

IHS for importation of nursery stock
The import health standard (IHS) 155.02.06: Importation of nursery stock has been amended, specifically the schedule for Tulipa.

The standard is dated 18 January 2010 and replaces that dated 20 October 2009.

The standard can be viewed at: www.biosecurity.govt.nz/files/ihs/155-02-06.pdf

For further information: email plantimports@maf.govt.nz or phone 0800 00 83 33
Pest watch: 05/10/2009 – 09/01/2010

Biosecurity is about managing risks – protecting the New Zealand environment and economy from exotic pests and diseases. MAF Biosecurity New Zealand devotes much of its time to ensuring that new organism records come to its attention, to follow up as appropriate. The tables here list new organisms that have become established, new hosts for existing pests and extensions to distribution of existing pests. The information was collated between 5 October 2009 and 9 January 2010. The plant information is held in the Plant Pest Information Network (PPIN) database. Wherever possible, common names have been included.

ANIMAL KINGDOM RECORDS

Validated new to New Zealand reports
No validated new to New Zealand records during this period.

Significant find reports
No significant find records during this period.

New host reports
No new host records during this period.

New distribution reports
No new distribution records during this period.

PLANT KINGDOM RECORDS

Validated new to New Zealand reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaeoacremonium rubiginosum (fungus: no common name)</td>
<td>Melia azedarach (Chinaberry tree, Persian lilac, Pride of India)</td>
<td>Hawke's Bay</td>
<td>Scion</td>
<td></td>
</tr>
<tr>
<td>Tobamovirus rubrgrass mosaic virus (virus: RMV)</td>
<td>Actinidia chinensis (kiwifruit)</td>
<td>Bay of Plenty</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Vitivirus actinidia vitivirus (virus: no common name)</td>
<td>Actinidia chinensis (kiwifruit)</td>
<td>Bay of Plenty</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Reptanema obesa (fungus: no common name)</td>
<td>Pittosporum tenuifolium (pittosporum)</td>
<td>Nelson</td>
<td>Scion</td>
<td></td>
</tr>
<tr>
<td>Carmovirus undetermined carmovirus A (virus: no common name)</td>
<td>Pericaria odorata (Vietnamese mint)</td>
<td>Auckland</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Carmovirus undetermined carmovirus B (virus: no common name)</td>
<td>Pericaria odorata (Vietnamese mint)</td>
<td>Auckland</td>
<td>General surveillance</td>
<td></td>
</tr>
</tbody>
</table>

Significant find reports
No significant find records during this period.

New host reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecognatha parilis (mite: no common name)</td>
<td>Viburnum opulus (snowball tree)</td>
<td>Southland</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Scirtothrips inermis (insect: no common name)</td>
<td>Metrosideros excelsa (pohutukawa)</td>
<td>Auckland</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Meloderma desmazieresii (fungus: no common name)</td>
<td>Pinus strobus (no common name)</td>
<td>Gisborne</td>
<td>Scion</td>
<td></td>
</tr>
<tr>
<td>Leptachrous strigipennis (insect: no common name)</td>
<td>Salix alba (silver willow, willow)</td>
<td>Wellington</td>
<td>Scion</td>
<td></td>
</tr>
</tbody>
</table>

Extension to distribution reports

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host</th>
<th>Location</th>
<th>Submitted by</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthidium manicatum (insect: wool carder bee)</td>
<td>Digitalis purpurea (foxglove)</td>
<td>Marlborough Sounds</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Carlavirus sp. (virus: unidentified Carlavirus)</td>
<td>Fuchsia x hybrida (fuchsia)</td>
<td>Southland</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Mecognatha parilis (mite: no common name)</td>
<td>Viburnum opulus (snowball tree)</td>
<td>Southland</td>
<td>General surveillance</td>
<td></td>
</tr>
<tr>
<td>Meloderma desmazieresii (fungus: no common name)</td>
<td>Pinus strobus (no common name)</td>
<td>Gisborne</td>
<td>Scion</td>
<td></td>
</tr>
<tr>
<td>Phylacteophaga fraggattii (insect: eucalyptus sawfly, leaf blister sawfly)</td>
<td>Eucalyptus sp. (eucalyptus, gum tree)</td>
<td>Dunedin</td>
<td>Scion</td>
<td></td>
</tr>
<tr>
<td>Diplodia taxi (fungus: no common name)</td>
<td>Taxus baccata (Yew)</td>
<td>Wellington</td>
<td>Scion</td>
<td></td>
</tr>
</tbody>
</table>

If you have any enquiries regarding this information please email surveillance@maf.govt.nz
MAF general enquiries: 0800 00 83 33
Exotic disease and pest emergency hotline: 0800 80 99 66
www.biosecurity.govt.nz