A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea

Ernesto Abbate*, Andrea Albanielli†, Augusto Azzaroli†, Marco Benvenuti†, Berhan Tesfamariam‡, Piero Bruni*, Nicola Cipriani*, Ronald J. Clarke*, Giovanni Ficcarelli†, Roberto Macchiarelli¶, Giovanni Napoleone*, Mauro Papini*, Lorenzo Rook*, Mario Sagri*, Tewele Medhin Tectar, Danilo Torre& and Igor Villa*

* Dipartimento di Scienze della Terra, Università di Firenze, 50121 Firenze, Italy † Museo di Storia Naturale, Sezione di Geologia e Paleontologia, Università di Firenze, 50121 Firenze, Italy ‡ Eritrea National Museum, Asmara, Eritrea § Palaeo-Anthropology Research Unit, Department of Anatomical Sciences, University of the Witwatersrand Medical School, Johannesburg 2193, South Africa ¶ Museo Nazionale Preistorico Etnografico ‘L. Pigorini’, Sezione di Antropologia, 00144 Roma, Italy # Ministry of Energy, Water and Mineral Resources, Department of Mines, Asmara, Eritrea # Mineralogisches Institut, Abteilung für Isotopengeologie, Universität Bern, Switzerland

One of the most contentious topics in the study of human evolution is that of the time, place and mode of origin of Homo sapiens1–3. The discovery in the Northern Danakil (Afar) Depression, Eritrea, of a well-preserved Homo cranium with a mixture of characters typical of H. erectus and H. sapiens contributes significantly to this debate. The cranium was found in a succession of fluvo-deltaic and lacustrine deposits and is associated with a rich mammalian fauna of early to middle Pleistocene age. A magnetostratigraphic survey indicates two reversed and two normal magnetozones. The layer in which the cranium was found is near the top of the lower normal magnetozone, which is identified as the Jaramillo subchron. Consequently, the human remains can be dated at ~1 million years before present.

The cranium, two incisors and two pelvic fragments were recovered between 1995 and 1997 near the village of Buia, Eritrea, about 100 km south-south-east of Massawa in the Danakil Depression, which is more than 1,000 m thick. This unit, also known as the Red Series4,5, crops out extensively in the Danakil Depression, a belt of depression of Eritrea, of a well-preserved fluvio-deltaic and lacustrine deposits and is associated with a rich faunal assemblage dominated by large herbivores. A one-million year-old Homo cranium from the Danakil Depression of Eritrea

*Correspondence and requests for materials should be addressed to S.L.d.S. (e-mail: gesilva@scifac.indstate.edu).

Figure 1 Simplified geology of the Northern Danakil Depression between the Eritrean-Ethiopian plateau and the Southern Red Sea. The palaeo-anthropological site near Buia is indicated by an asterisk.

NATURE | VOL 393 | 4 JUNE 1998
found in a large sandy channel resting above this layer, and the UA 222 incisor comes from a thin lenticular sandy bed 1.5 m below the skull-bearing layer.

The Homo-bearing layer of the Buia section is exposed in several well-correlated outcrops in which a rich vertebrate fauna is represented by *Elephas recki*, *Hipparion* sp., *Equus* sp., *Ceratotherium simum*, Rhinocerotidae indet., *Pelorovis* sp., *Kobus ellipsiprymnus*, Bovidae indet., *Kolpochoerus* cf. *K. majus*, cf. *Kolpochoerus* sp. (advanced form), *Hippopotamus gorgops*, *Hexaprotodon karuenensis*, *Hyaenidae* indet., *Chelonia* and *Crocodilia*. This is a typical African savanna fauna and indicates an age interval from early to early middle Pleistocene.

A magnetostratigraphic study was carried out on 97 hand samples collected in the silts and fine sands of the sequence. Characteristic directions of the palaeomagnetic vector, selected after thermal and alternative field cleaning procedures, yielded the virtual geomagnetic pole (VGP) latitudes used for defining the magnetostratigraphic succession (Fig. 2). Four magnetozones are recognized: two reversed R1 (0–115 m) and R2 (202–377 m), and two normal N1 (115–202 m) and N2 (377–500 m). The layer with the Homo remains is placed near the top of magnetozone N1.

On the basis of the biochronological and palaeomagnetic data, the Buia magnetozones have been correlated with the Geomagnetic Polarity Time Scale, and the magnetozone N1 has been identified as Jaramillo. This attribution relies on the following considerations. First, the mammal fauna gives a comprehensive age interval from the early Pleistocene to the early middle Pleistocene. Second, the succession does not reveal significant gaps and can be regarded as substantially continuous. Third, the two reversed magnetozones R1 and R2 are quite thick and, presumably, cover two relatively extended periods of time. They can be safely related to the Matuyama chron. Finally, the interposed polarity normal N1 has to be identified as Jaramillo, because it is thinner than the overlying N2. If N1 were identified as the Olduvai subchron, it would depend on the assumption that different intervals had markedly different rates of deposition, and there is no evidence for this. Because the Homo-bearing layer is near the top of the Jaramillo subchron it can be dated to ~ 1 Myr before present.

The cranium exhibits a nearly complete braincase (lacking most of the basicranium) and parts of the facial skeleton. No dental crowns remain, but the roots of the right P3, P4, M1, M2, M3 (mesial), and of the left P4, M1, and M2 are included in the alveoli.
A silty matrix still adheres to the external left half of the specimen. For logistic reasons it has not yet been possible to clean, reconstruct and fully study the cranium, so here we offer only a preliminary assessment. For similar reasons the pelvic fragments and incisors are not described here.

A remarkable feature of UA 31 is its great anteroposterior length (204 mm) in relation to its maximum cranial breadth (130 mm). The greatest cranial breadth is located at the level of the supra-mastoid crests and with the length gives a cranial index of 63.7. Although the skull has not yet been restored and cleaned, tentative estimates suggest an endocranial capacity of 750–800 cm3.

The neurocranium is low compared to its maximum length, but high relative to its transverse diameter. The upper-middle facial skeleton is slightly concave and marked prognathism is evident in the subnasal region. The face is shallow, wide and short, with its length reaching less than one-third of the total cranial length as seen in basal view. The very heavily built, forwardly projecting supraorbital torus is arched and thickened medially and over the middle of each orbit (17 mm). The minimum frontal breadth is 84.0 mm. Substantial elevation of the forehead and absence of sagittal keeling are evident in frontal view. The frontal squame is well curved to bregma and the vault outline becomes gradually flatter on the parietals. The temporal lines originate in the form of a raised crest at the posterolateral margin of the supraorbital torus, but disappear early on the parietals. A slightly thickened angular torus is present. There is no nuchal torus, but a modest external protuberance is detectable where opisthocranium coincides with inion.

The specimen also shows a modest protrusion of the mastoid–supra-mastoid–auricular complex lateral to the temporal square. The mastoid process is short and broad. In coronal section, the parietal walls converge slightly inferiorly (Fig. 3); there is a high positioning of the maximum biparietal breadth (125.0 mm); the parietal thickness progressively decreases up to the midline (from 7.4 to 6.0 mm); the thickness at bregma is 6.3 mm.

The cranium from Buia shows the following combination of features, which are characteristic of the African specimens referred to Homo erectus and Homo ergaster 1,2,13: long ovoid braincase with low endocranial capacity; greatest cranial breadth across the supra-mastioid crests; massive supraorbital torus; opisthocranium coincident with inion. One trait typical of H. sapiens is the high position of the greatest biparietal breadth with parietal walls converging slightly inferiorly. This mosaic of primitive and progressive features increases the known morphological variation reported for early-middle Pleistocene Homo crania and urges caution in the specific assessment of UA 31. Until we have conducted a full comparative study, we prefer to leave open its specific allocation.

Given its chronological position, in the middle of the time interval 1.4–0.6 Myr, from which no human cranial remains of comparable integrity are known from Africa 1,3, this unique Eritrean specimen provides a new perspective on the origins of modern humans. Its age indicates that morphology like that of H. sapiens had begun to differentiate in Africa at ~1 Myr, which is ~0.3 Myr earlier than previously estimated1,14.

Received 25 September 1997; accepted 26 February 1998.

Acknowledgements. All fossils are stored at the Eritrea National Museum, Asmara; inventory numbers refer to the provisional catalogue. We thank M. Pickford and T. D. White for discussions about the fossil record; M. R. Gibling, I. P. Martini, P. Pasierbski and A. Turner for critical reading of an earlier manuscript; A. Kibwab (Eritrea Department of Mines) and Y. Libeska (Eritrea National Museum) for assistance in Eritrea; and F. Heller (ETH Magnetic Laboratory, Zurich). This work was supported by the Italian CNR (Cultural Heritage and TRANSFERT projects), the PerTrinity Programme, the European Community, the University of Florence, and the Italian Ministry for Foreign Affairs.

Correspondence and requests for material should be addressed to E.A. (e-mail: a.urbancsik.unifi.it).

Selective foraging behaviour of basking sharks on zooplankton in a small-scale front

David W. Simms & Victoria A. Quayle

Department of Biological Sciences and Plymouth Environmental Research Centre, University of Plymouth, Plymouth PL4 8AA, UK

The basking shark Cetorhinus maximus is the second largest fish species, attaining lengths of up to 11 m. During summer months in temperate coastal waters circumglobally, these sharks filter-feed on surface zooplankton1,2 near water-mass boundaries (fronts)3,4; however, little else is known about their biology5. Their foraging behaviour has not been investigated until now, although they have been described6 as indiscriminate planktivores that are unlikely to orientate to specific plankton-rich waters. We have now tracked basking sharks responding to zooplankton gradients. We show that they are selective filter-feeders that choose the richest, most profitable plankton patches. They forage along thermal fronts and actively select areas that contain high densities of large zooplankton above a threshold density. They remain for up to 27 hours in rich patches that are transported by tidal currents and move between patches over periods of 1–2 days. We mapped feeding locations of these sharks in two years; the maps show that these sharks indicate broad shifts in front-located secondary production. Foraging behaviour of basking sharks therefore indicates the distribution, density and characteristics of zooplankton directly. This makes these sharks unique biological ‘plankton recorders’, with potential use as detectors of trends in abundance of zooplankton species that are influenced by climatic fluctuations of the North Atlantic Oscillation6.

Natural foraging behaviour of filter-feeding marine fishes is poorly understood because of the problems associated with tracking them and quantifying food abundance simultaneously. However, the basking shark spends long periods feeding at the waters’ surface, a behaviour that allows study of this shark by tracking, observation of active feeding, and sampling of zooplankton prey. During May–July in 1996 and 1997, we tracked visually the movements of aggregations of feeding sharks (n = 13 groups) and the fine-scale foraging movements of individual basking sharks (n = 14), and measured zooplankton density on their swimming paths off Plymouth, southwest England (50°16′N 004°09′W). We also recorded the positions of basking sharks sighted in addition to those tracked. During 1996 and 1997, we observed 58 and 54 different sharks, respectively.

Foraging locations of basking sharks seen during May–July in 1996–97 were orientated along a seasonal boundary separating coastal inshore water off Plymouth from fully stratified water of the